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ABSTRACT 

As an approach to mitigate the harmful effects of Urban Heat Island (UHI), the use of glass 

cullet in the production of asphalt roof shingles has the potential to be employed as a cool roof 

strategy.  The objective of this study was to test the hypothesis that the use of recycled glass 

increases solar reflectance index (SRI) without affecting the performance of asphalt roof 

shingles.  In order to evaluate the feasibility of recycled glass for alternative uses, the 

engineering properties of glass cullet were investigated and compared to conventional aggregates 

used in the production of asphalt roof shingles.  Laboratory samples were then prepared in order 

to measure solar reflectance properties and strength performance of conventional and recycled 

glass roof shingles.  It is shown that while the use of recycled glass as a replacement to standard 

ceramic coated black roofing granules on the top surface of asphalt shingles results in an 

increased SRI, the addition of white pigment powder (anatase ultra fine particles passing mesh 

#320) mixed together and applied with the surface granules improves reflectance values to meet 

the cool roof threshold.  
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CHAPTER 1 – INTRODUCTION 

Elevated temperatures during the summertime leads to thermal discomfort, human health issues, 

and increased consumption of energy demand for cooling purposes.   In urban areas, the 

phenomenon of heat island, which is the thermal gradient difference between developed and 

surrounding undeveloped areas, is becoming increasingly more intense.  Projections demonstrate 

that many urban areas around the world will experience daytime temperature increases of up to 

6°C as a result of heat islands (Kültüra and Türkeri 2012). 

 Development of the earth's surface and the use of high solar radiation absorbing materials 

are causes of heat island effect, especially in areas where there is a high density of buildings and 

urban structures.  Impacts to the local microclimate both on the surface and in the atmosphere are 

caused by changes in the thermal properties of building materials and pavements and the removal 

of natural vegetation (Bretz, Akbari and Rosenfeld 1997). 

 Shade from trees and green roof strategies are practices that mitigate heat island effect, 

provide thermal comfort, reduce energy demand, and add aesthetic value to the environment 

(Saadatian, et al. 2013), but they are not sufficient as a sole solution to the problem.  Exposed 

and highly absorptive materials used on roofs are a major contributing factor that increases heat 

island effect and cooling demands in urban areas.  Roofing materials collect energy from the sun, 

which results in increased temperatures on and adjacent to the surface.  Experiments indicate that 

highly absorptive roofs (i.e. roofs that absorb 95% of the incident solar flux) can have a surface 

temperature as much as 60°C higher than the surrounding ambient air (Konopacki and Akbari 

2001).  This high amount of solar absorptance may also cause heat gains into buildings through a 

low-grade building envelope, and heat gain through a roof can be a dominant component of the 

total building cooling load (Akbari, Konopacki and Pomerantz 1999).  This increased heat load is 
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maximized when the materials that comprise the building envelope include dark colored surfaces 

and have poor or no insulation. 

 One solution to this problem in the roofing industry has been the use of solar reflective 

materials.  Solar reflective materials (i.e. cool roofs) maintain low surface temperatures by 

increasing the exterior albedo, which reduces heat transfer through the building envelope.  For 

roofing materials to be regarded as cool, the solar reflectance must exceed a specified threshold, 

which for asphalt shingles on sloped roofs is often taken to be 0.25 (Berdahl, Akbari, et al. 

2012).    

The widespread use of cool roofs can save energy, mitigate urban heat islands, and slow 

global warming by cooling the roughly 20% of the urban surface that is roofed (Levinson, 

Akbari and Berdahl 2010).  Data has shown that summer energy savings of cool roofs can result 

in savings of up to 70% for an individual building due to lower cooling demands (Bretz, Akbari 

and Rosenfeld 1997).  Roofs with high solar reflectance and high infrared emittance will reduce 

cooling energy consumption and mitigate the heat island effect, especially in hot and sunny 

urban environments (Kültüra and Türkeri 2012). 

 With rising energy prices, the potential exists to employ cool roof strategies that are 

beneficial to the environment, the user, and industry.  Therefore, there is an opportunity in the 

construction and roofing industry to develop a highly-reflective asphalt roof shingle using 

recycled materials that enhances performance characteristics and is economically and 

environmentally beneficial. 

1.1 Problem Statement 

The reuse of glass cullet, which is crushed and furnace-ready scrap glass, is economically and 

environmentally beneficial.   Glass is 100% recyclable, can be recycled endlessly without loss in 
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quality, and of the 11.5 million tons of glass in the municipal solid waste stream in 2011, 

approximately 28% was recovered for recycling (U.S. Environmental Protection Agency 2013).   

The use of glass cullet is a promising technology that aims to increase the reflectivity of 

materials used in asphalt roof shingles.  However, the application of this technology in asphalt 

roof shingles is still in its infancy, and many environmental, design, and operational factors still 

require further evaluation.  Furthermore, many factors have not been investigated such as 

understanding the various interactions that occur when blending traditional roofing materials 

with recycled glass cullet. 

1.2 Objectives 

To address the aforementioned problem statement, the objective of this study was to test the 

hypothesis that the use of recycled glass cullet in asphalt roof shingles enhances solar reflectance 

without affecting performance.  This project proposes a design that incorporates discarded glass 

into asphalt roofing shingle products, which will help reduce building related waste and 

construction and demolition debris (C&D).  Ultimately, this project aims to develop a new 

technology that enhances shingle manufacturing and performance by: (a) evaluating the 

suitability of using recycled glass cullet in roof shingles; (b) measuring the reduction in thermal 

loads and heat island effects based on the proposed recycling approach; and (c) determining the 

optimum blending ratios for the proposed glass-cullet modified shingles. 

1.3 Research Approach 

To achieve the objectives of this study, glass cullet from contrasting sources were obtained and 

characterized, and then shingle samples were prepared using varying proportions of air-blown 

asphalt, glass cullet, fiberglass matting, and ceramic-coated granules to measure solar reflectance 
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and performance requirements.  The proposed research methodology consisted of ten tasks split 

over two project phases. 

Phase 1: Characterize the mechanical and reflectance properties of glass cullet.  The 

objective of this task was to characterize the mechanical and reflectance properties of recycled 

glass cullet collected from C&D processing plants across the country.  After the sources of glass 

cullet were collected, mechanical and reflectance characteristics were analyzed, and then the 

glass was ground for use in asphalt shingles. 

Task 1: Collection of recycled glass cullet.  Sources of glass cullet were collected from 

C&D processing plants.  Three contrasting sources of recycled glass cullet were collected and 

consisted of two different sources of clear glass cullet and one source of green glass. 

Task 2: Grind the collected recycled glass cullet.  In order to match the gradation of 

conventional shingles, the glass cullet fragments sizes were reduced with the use of a 

commercial quality blender.  The three recycled glass cullet sources were then ground to smaller 

sizes, sieved, and then separated to match the particle sizes of the conventional aggregates used 

as top surface granules, backdust, or filler material.  The following U.S. Standard Mesh sieves 

were utilized: #4, #8, #10, #16, #20, #30, #40, #50, #80, #100, and #200.     

Top surface granules resemble coarse sand and consist of particles passing through U.S. 

Standard Sieve Mesh #8 (2.36mm) and retained on #30 (595µm).  Backdust particles pass 

through U.S. Standard Sieve Mesh #30 (595µm) and are retained on #200 (75µm).  Filler 

material consists of particles passing through U.S. Standard Sieve Mesh #100 (150µm) and 

retained on #325 (45µm). 

Task 3: Determine grain size distribution.  To determine the particle size distribution, 

grading, and fineness modulus of glass cullet and conventional aggregate, sieve analyses were 
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completed using the Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates 

(ASTM C136).  Figure 1 shows the sieves and mechanical sieve shaker utilized. 

 

Figure 1 Mechanical Shaker and Sieves 

The three sources of recycled glass cullet (one green and two clear glass) collected from 

C&D plants were analyzed prior to being reduced to smaller fragments using the following U.S. 

Standard Mesh sieves: 1”, 3/4”, 1/2”, 3/8”, #4, #8, #16, #20, #30, #50, #100, and #200.  The 

percentage of material retained and passing each sieve was recorded, and each analysis was 

repeated three times in order to determine average particle size distribution.   

In order to classify glass cullet using the Standard Practice for Classification of Soils for 

Engineering Purposes (ASTM D2487), the coefficient of curvature ���� and the coefficient of 

uniformity (Cu) were calculated.  The following formulas were used, where ���,���, and ��� 

correspond to the particle diameters that are 60%, 30%, and 10% finer on the cumulative 

particle-size distribution curve. 

������	��
� �� ������� ���� =  
(���)�

(��� × ���)
�  

������	��
� �� �
������� ���� =  
��� ���

�   
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The fineness modulus of recycled glass cullet was determined in accordance with the 

definition provided in the Standard Specification for Concrete Aggregates (ASTM C33).  In 

order to calculate the fineness modulus, the sum of the cumulative percentages retained on the 

following U.S. Standard Mesh sieves was divided by 100: 3/4”, 3/8”, #4, #8, #16, #30, #50, and 

#100.   

��
�
��� ������� =
��� �� ���������� % �����
�� �
 �����
���� ������

100
  

For the material finer than the 75μm, hydrometer analyses were conducted by means of 

the Standard Test Method for Particle-Size Analysis of Soils (ASTM D422).  The glass particle 

size distribution curves and fineness modulus were then compared to conventional aggregates, 

which included ceramic coated top surface granules, crushed limestone backdust, and high 

calcium limestone filler material. 

Task 4: Test the engineering properties of glass cullet.  Each glass cullet source was 

characterized by identifying the density, specific gravity, absorption, void content, and 

soundness.  The density, specific gravity, and absorption of the fine material was determined by 

the use of the Standard Test Method for Density, Relative Density (Specific Gravity), and 

Absorption (ASTM C128).   

To compare the average specific gravity and absorption of glass cullet particles to 

conventional aggregate, the gravimetric (pycnometer) procedure was completed, as referenced in 

the Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of 

Fine Aggregate (ASTM C128).  Figure 2 shows the mold and tamper for surface moisture test.  

This test was completed for the following fine aggregate used to produce laboratory shingle 

samples: green glass, clear glass 1, clear glass 2, ceramic coated granules, crushed limestone, and 

limestone filler material.  Tests were completed three times for each aggregate type. 
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Figure 2 Surface Moisture Test to Determine Specific Gravity and Absorption 

To calculate specific gravity on the basis of oven dry (OD), saturated surface dry (SSD), 

and apparent conditions, four testing measurements were required: Mass of oven dry specimen 

(g), mass of pycnometer filled with water (g), mass of pycnometer filled with specimen and 

water (g), and the mass of the surface dry specimen (g).  Specific gravity (OD) is the ratio of the 

density of the oven dry specimen to the density of water, specific gravity (SSD) is the ratio of the 

density of the saturated surface dry specimen to the density of water, and apparent specific 

gravity is the ratio of the density of the impermeable portion of the specimen to the density of 

water.   

The same procedure was completed for measurements of absorption, which is based on 

the difference between the masses of the saturated surface dry specimen and the oven dry 

specimen.  The absorption measurement is a reading of the increase in mass due to penetrating 

water into the pores with no water on the surface of the particles. 

The uncompacted void content of a fine aggregates were determined using the Standard 

Test Methods for Uncompacted Void Content of Fine Aggregate (ASTM C1252).  Figure 3 
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shows the cylindrical measure, funnel apparatus, and the metal spatula used during the 

experiment.  The fine aggregates were sieved and separated by particle size as used on shingles 

as top surface granules, backdust, and filler material.  Test Method C, which accounts for as 

received grading was then completed to determine the average uncompacted voids for each 

source of glass as compared the corresponding conventional aggregates.  Tests were completed 

three times for each source.  

 

Figure 3 Void Content Apparatus 

To estimate the soundness of recycled glass and conventional aggregate, samples were 

exposed to sodium sulfate to simulate freeze-thaw weathering conditions, as referenced in the 

Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium 

Sulfate (ASTM C88).  A quantitative evaluation of fine aggregates was conducted by separating 

and recording the weight of each type of aggregate retained on the following U.S. Standard Mesh 

sieves numbers: #4, #8, #16, #30, and #50.   

The aggregates were then submerged for 18 hours and then oven dried to a constant 

weight.  The process was completed for 5 cycles and percent losses per sieve measurements were 
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recorded.  Tests were completed three times for each aggregate type.  The test was completed for 

green glass, clear glass 1, and clear glass 2 on all sieves listed above.  For comparison to 

conventional aggregates, ceramic coated surface granules were used for the #8, #16, and #30.  

Crushed limestone backdust was utilized on the #50, and no conventional aggregate testing was 

completed for the #4 sieve.  Figure 4 shows samples prepared for immersion in the sodium 

sulfate solution. 

 

Figure 4 Soundness Testing of Aggregates 

Task 5: Compare the surface reflectance of glass cullet and conventional top surface 

granules.  Reflectance can be estimated using a known measurement of a light source using a lux 

meter.  The following equation was used to calculate initial reflectance measurements. 

� =
��
  

Reflectance of the specimen is represented by ρ, luminance of the port in candelas per square 

meter is L, and the illuminance of the known source of light is E (Hiscocks 2011). 

Phase 2: Prepare roof shingles in the laboratory and conduct reflectance and durability 

testing.  For proper performance, shingles must be resistant to tearing, warping, and shrinkage 

when installed (IKO 2012). 

Task 6: Determine the blending proportions of recycled glass cullet and conventional 

minerals.  Various proportions of glass cullet were utilized in lieu of and with conventional 



10 
 

mineral aggregate and used as top surface granules, backdust particles, and mineral filler 

material. 

Task 7: Prepare shingle samples.  A typical asphalt roofing shingle consists of a substrate 

material, asphalt coating, top surface granules, and backdust particles.  The substrate is a thin 

porous sheet made of fibers in a nonwoven pattern, which becomes impregnated by asphalt.  The 

asphalt coating, which consists of 35% air blown asphalt and 65% mineral fillers by weight, is 

heated so that it fully coats and impregnates the fiberglass matting.  While still hot, granules are 

pressed onto the surface so that 100% coverage is achieved.  The shingle is then cooled and the 

back surface is reheated so that backdust dust material will achieve 100% coverage of the 

backside.  Acceptability of the glass cullet modified shingles is based on the Standard 

Specification for Asphalt Shingles Made from Glass Felt and Surfaced with Mineral Granules 

(ASTM D3462). 

Task 8: Measure the solar reflective properties.  The surface reflectance of the prepared 

shingles were measured by using a spectrophotometer under a controlled light source that 

simulates natural daylight illumination and under various incident and reflected angles.  The 

reflectance of glass-modified shingles was compared against the reflectance of conventional 

shingles available in the market.  The Solar Reflectance Index (SRI), absorptance, and emittance 

of the manufactured shingles were measured using ASTM E903, ASTM E1918, ASTM E1980, 

and ASTM E408.  Sample dimensions were 3” x 3” x 1/8”.  Initial tests included two readings of 

three replicates. To increase precision, samples with pigments received six readings of three 

replicates per type. 

Task 9: Test the viscosity of asphalt coating blends.  To evaluate the workability and 

consistency of the asphalt coating blends, viscosity measurements were taken using a Brookfield 
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rotational viscometer according to the procedure outlined by the Standard Test Method for 

Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer 

(ASTM D4402).  A relatively low viscosity, 1000 to 5000 centipoise, of the coating blends is 

desirable to ensure efficient processing (Whitaker, Smith and Puryear 2010, Bondoc, et al. 1988).  

Figure 5 shows the rotational viscometer and temperature controlled thermal chamber.  A testing 

temperature of 204˚C was utilized since it was the minimum mixing and handling temperature 

needed to produce the laboratory shingles, and it ensured that the blends had enough flow to 

provide accurate measurements of viscosity. 

 

Figure 5 Rotational Viscometer and Thermal Chamber 

The initial asphalt coating blend prepared for viscosity measurements included 100% Air 

Blown Asphalt with no filler materials.  Mineral filler materials were then added to the air blown 

asphalt at a ratio of 65% mineral fillers to 35% asphalt by weight.  The mineral filler material 

evaluated included green glass, clear glass 1, clear glass 2, and high calcium limestone as the 

conventional aggregate.  Three measurements of each coating blend were completed to achieve 

an average viscosity. 
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Task 10: Determine the tear strength.  To determine if the shingles achieve minimum 

performance standards as specified in Standard Specification for Asphalt Shingles Made from 

Glass Felt and Surfaced with Mineral Granules (ASTM D3462), a pendulum test was used to 

measure tear strength.  As shown in Figure 6, tear strength was determined by using an 

Elmendorf-type tearing tester (Model: Mechanical Elmendorf Tear, Thwing-Albert).  The 

Standard Test Method for Propagation Tear Resistance of Plastic Film and Thin Sheeting by 

Pendulum Method (ASTM D1922) will produce an average tear strength using an Elmendorf-

type tearing tester.  Sample dimensions were 3” x 2 1/2” x 1/8”.  Two sets of each specimen 

were prepared so that ten measurements could be made for both machine direction and transverse 

direction readings. 

 

Figure 6 Mechanical Elmendorf Tear Strength Device 

Chapter 2 provides a review of literature associated with this research, and results of each 

project phase and task are discussed in Chapter 3.  The last chapter provides a summary of the 

results and also includes future recommendations and research ideas. 
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CHAPTER 2 – LITERATURE REVIEW 

2.1 Introduction 

The urban heat island (UHI) phenomenon is becoming increasingly intense as summertime 

temperatures rise.  In the United States, many cities with a population of 1 million or more 

people experience an annual mean air temperature of a 1.8–5.4°F (1–3°C) warmer than its 

surroundings (U.S. Environmental Protection Agency 2014).  Heat island effect is caused by the 

development of the earth’s surface, which replaces shade from trees and natural vegetation with 

highly absorptive construction materials, such as roofs.  Exposed and highly absorptive materials 

used on roofs are a major contributing factor to increasing the heat island effect.  Mitigation 

strategies that may be implemented include increasing tree and vegetative cover, creating green 

roofs, installing cool roofs, and using cool pavements (U.S. Environmental Protection Agency 

2014). 

2.2 Roofing Systems 

A roof is the uppermost part of a building and provides coverage from the rain, cold, or heat. 

Typically, there are two parts to a roof: the supporting structure and the outer layer (i.e. roof 

covering).   The supporting structure must be strong enough to withstand high winds, sloped to 

shed water, and in areas of heavy snow, it must be constructed more rigidly to bear the extra 

weight (Department of the Army 1995).  Roof coverings come in a variety of forms.  

Commercially available coverings include asphalt shingles, roll roofing, concrete and ceramic 

tiles, slate, terne metal, wood shingles and shakes, aluminum shingles, built-up roofing, and 

single-ply systems (Genesis Roofing 2013). 

The design and appearance of a roof comes in a multitude of variations, which may 

depend based upon the intended purpose of the building, the selection of materials, and the 
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architectural concept.  Since the primary purpose of a roof is to protect people and possessions 

from the weather, then the functionality and purpose of the building may dictate certain design 

parameters of a roof, such as the amount of insulation or ventilation desired.  Another variable in 

roof design is the selection of materials, and roofing materials can vary greatly based upon local 

choice concerning necessity, customs, available materials, material cost, and the life span of the 

roof (Leavell 2006).  Additional design factors may include domestic architecture, which 

considers traditions, aesthetics, stylistics, and sustainability features (i.e. solar energy systems, 

recycled material, etc.). 

2.2.1 Climatic Conditions of Roofs 

The roof environment is subject to harsh weathering effects, such as ultraviolet radiation as 

shown in Figure 7, extreme heat, freezing temperatures, and the subsequent fatigue caused by 

both sudden and cyclical thermal loads.  The surface temperatures of a traditional asphalt roof 

system may reach temperatures upwards of 160°F degrees on a 90°F degree day, and a metal 

roof will reach temperatures of 180°F degrees on the same day (Nations Roof 2013). 

 

Figure 7 Energy Balance on Roof Surface (ERSystems 2014) 

Roof coverings are also exposed to other environmental agents, such as wind, rain, hail, 

snow, and atmospheric pollution (Kültüra and Türkeri 2012).  These environmental factors, as 
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well as the composition of materials and the materials’ ability to resist weathering effects have a 

direct impact on the performance and life expectancy of a roof.  The life span and maintainability 

of a roof is of utmost importance as the roof is often the least accessible part of a building.  

2.2.2 Types of Roofing Systems 

Roof systems are generally divided into two generic classifications based on roof pitch: low 

slope and steep slope.  Typical roof slopes are shown in Figure 8, and the slope is considered a 

primary factor in roof design, since the slope of a roof has an effect on the interior volume of a 

building, drainage, style, and the material used for the covering (CertainTeed Corporation 2013).   

 

Figure 8 Typical Roof Pitches (APB Pole Barns 2010) 

The National Roofing Contractors Association (NRCA) delineates the difference between 

the two categories at 3:12 (14.04 degrees), whereas low slope roofing is less than or equal to 

3:12 and steep slope roofing is exceeds 3:12.  In contrast, Leadership in Energy & 
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Environmental Design (LEED) and the Standard Test Method for Measuring Solar Reflectance 

of Horizontal and Low-Sloped Surfaces in the Field (ASTM E1918) defines a low slope roof as 

being less than or equal to 2:12 (9.46 degrees) and a steep slope roof exceeds 2:12. 

2.2.2.1 Low Slope Roofing 

Low slope roofing systems are often called flat roofs, which are the most cost efficient roof 

shape.  Low slope roofs are the predominate roof type for commercial buildings and are typically 

comprised of three interacting components: weatherproofing, reinforcement, and the surface.  

The weatherproofing component is the most important element because it keeps water from 

entering a roof assembly, while the reinforcement layer adds strength, puncture resistance, and 

dimensional stability to the system (National Roofing Contractors Association 2013).  The 

surface layer provides the weatherproofing while the reinforcement layers protect from 

ultraviolet radiation and precipitation.  Enhancements to the surface layer may include benefits, 

such as increased fire resistance, improved traffic and hail resistance, and increased solar 

reflectivity (National Roofing Contractors Association 2013). 

Classifications of low slope roofing systems include: built-up roof (BUR) membranes, 

metal roof panels, polymer-modified bitumen sheet membranes, single-ply membranes, and 

spray polyurethane foam (SPF) based systems (National Roofing Contractors Association 2013).  

BUR systems are often called tar and gravel roofs, and they consist of built up layers of bitumen 

(tar or asphalt), reinforcing fabric (felt or ply sheets), and mineral aggregates (gravel or slag).  

Structural metal roof panels provide excellent water resistance capabilities and can be used for 

low or steep slope roofs.  Single-ply membranes are either thermoplastic or thermoset factory-

manufactured membranes that are adhered to the roof surface and do not receive any other 

surfacing, such as polyvinyl chloride (PVC) or ethylene propylene diene terpolymer (EPDM).  
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SPF roof systems are constructed by mixing and spraying a two-component liquid that forms the 

base and then a protective surfacing of an adhered roof system (National Roofing Contractors 

Association 2013). 

2.2.2.2 Steep Slope Roofing 

The slope of a roof is often referred to as the pitch, and the primary purpose of pitching a roof is 

to redirect water and snow.  Unlike a low slope roofing system that uses a waterproof membrane 

to protect the building, steep slope roofs are not watertight and are designed to shed water.  Steep 

roofs act more like a series of umbrellas than a weather-tight skin (Dearborn Real Estate 

Education 2013).  Generally, steeper roofs last longer, and steep roofs are typically more 

common in areas of high rain or snowfall, since water runs off steep roofs faster and the roof 

dries faster. 

Since most single family homes in the United States are constructed with a pitched roof, 

steep slope roofing is commonly referred to as residential roofing.  Steep slope roofing products 

are generally more visually appealing because they are critical aesthetic components for 

residential construction where the roof can consist of 40% of the exterior visual appearance of a 

home (CertainTeed Corporation 2013).  To classify residential roofing slopes more specifically, 

Table 1 contains common roof slopes and the terms which classify them.  

Table 1 Common Residential Roof Slopes (CertainTeed Corporation 2013) 

Type of Roof Slope Pitch 

Conventional < 9:12 

Higher Slopes 9:12 - 20:12 

Steep Slope ≥ 21:12 
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Steep slope roof systems consist of three primary components: roof deck, underlayment, 

and roof covering.  The roof deck is the structural component and is typically made out of wood 

materials such as plywood or oriented strand board (OSB), while the underlayment is a 

secondary weatherproofing barrier and is usually referred to as felt or paper (National Roofing 

Contractors Association 2013).  The roof covering provides water shedding and ultraviolet 

protection, and there are six generic classifications roof coverings: asphalt shingles, clay or 

concrete tile, metal, slate, wood shakes, and synthetic materials.  Asphalt shingles are the most 

widely used roof covering for new home construction and remodeling, and shingles are used on 

four out of five homes in the United States because of their economic value, durability, and 

aesthetic appeal (Genesis Roofing 2013). 

2.2.3 Asphalt Roofing Products 

In the United States, the most popular and economical form of roofing is asphalt products.  There 

are four main categories of asphalt roofing products: asphalt-saturated felt, roll roofing, modified 

bitumen roofing (MBR), and asphalt shingles (Falkiewicz and Maldonado 2010).  The specific 

application of an asphalt roofing product can vary based upon the budget, the type of surface, the 

slope of the roof, climatic conditions, installation constraints, and the height of the building.   

The most common asphalt roofing product is asphalt shingles and can last from 20 to 50 

years (Leavell 2006).  Asphalt roof shingles are designed to protect the roof from weathering and 

have excellent waterproofing capabilities, but as aging occurs, the weathering process causes oils 

from the asphalt to surface, which causes curling, cracking, and blistering (IKO 2012). 

2.2.4 Components of Asphalt Roof Shingles 

Asphalt shingles are true composites that are made from a variety of materials, including 

fiberglass or organic felt, asphalt binder, mineral filler, and aggregate granules.  By weight, 
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shingles may be made of 80% mineral and rock, and despite being called asphalt shingles, 

asphalt represents a very small yet important element (Leavell 2006).  Fiberglass shingles are 

composed of 19-36% asphalt by weight respectively, 8-40% mineral filler, 20-38% sand-sized 

mineral granules, and 2-15% fiberglass felt backing (U.S. Environmental Protection Agency 

2010).  The major components of typical fiberglass roof shingles can be classified as the 

substrate, asphalt coating with mineral fillers, and aggregate granules interact and ultimately 

affect performance, life expectancy, and weather resistance. 

2.2.4.1 Substrate 

The substrate, shown in Figure 9, is typically made of a sheet of fibers in a nonwoven pattern.  

Specifically, the glass fiber mats used are within the range of about 1.5 to 2.0 lbs/480 ft2 

(Falkiewicz and Maldonado 2010).  One or more layers of thin porous sheets may be used by 

adhering each together with asphalt coating material in order to increase the overall thickness 

and weight of the shingle, which ranges from 1.8 to 2.3 lbs/ft2.  The base is an asphalt 

impregnated mat with a thickness of about 10 to 35 mils if fiberglass, and if felt about 25 to 95 

mils (Bondoc, et al. 1988).  

 

Figure 9 Substrate Layer of a Fiberglass Roof Shingle (Dunlop 2003) 

The substrate or support layer is a felted, fibrous layer that is impregnated with a 

waterproofing agent, such as a bituminous coating that contains finely ground mineral stabilizer.  
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The felt acts as a carrier, substrate, and preserver of asphalt.  The substrate matting when coated 

by asphalt serves as reinforcement and the structural base of the shingle to which surface 

granules are applied (IKO 2012).  

The substrate may consist of organic or inorganic material. The matting can be made of 

any substance that reinforces the roofing shingle, such as mineral fibers, cellulose fibers, rag 

fibers, or synthetic fibers (Leavell, Glass Backdust for Roof Covering 2003).  In the past, organic 

fiber materials, such as rag, wood, paper, or jute fibers were used, but organic materials tend to 

absorb and release moisture, which results in expansion and contraction causing blisters (Pagen, 

Stepien, Jr. and Morris 1986).  The preferred material for the substrate is a nonwoven web of 

glass fibers. Though paper matting can be used, the heart of an asphalt shingle is a fiber mat 

made of nonwoven fiberglass (Leavell 2006).  Additionally, fiberglass is preferred due to the 

heat and hydro stability and fire resistance (Pagen, Stepien, Jr. and Morris 1986). 

2.2.4.2 Asphalt Coating with Mineral Fillers 

A mineral filled coating is used to impregnate, laminate, and coat the top and bottom surfaces of 

the substrate material.  The mineral filled coating is used to saturate the top and bottom surfaces 

of the mat, and the weight of the mat will directly vary with the thickness of the applied layer 

(Leavell 2006).   

Asphalt is a suitable coating material for roofing shingles due to its softness, flexibility, 

and strength (Falkiewicz and Maldonado 2010).  Due to its highly viscous nature, high 

temperatures (250 to 350°F) are required to make the material fluid for the addition of filler 

material and the production of shingles, but the curing time is fast since the shingles achieve full 

strength as the material cools.  The coating of the base sheet is generally of a viscosity between 

1,000 and 5,000 centipoise (Bondoc, et al. 1988). 
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 As shown in Figure 10, the use of mineral fillers extend the asphalt coating and can 

implement the use of waste material as a way to reduce cost, increase certain performance 

aspects, and provide environmental benign qualities (Leavell 2006).  Mineral fillers can equal up 

to 68% by weight of the asphalt coating and up to 40% by weight of the entire shingle product.  

Mineral filler is a major raw material requirement in the majority of manufactured asphalt 

shingles, and ideal filler should be environmentally benign, economical, non-absorptive, opaque 

to UV radiation, low free lime content to prevent accelerate granule loss, capable of producing 

low compound viscosities, increase stabilization of coating,  little or no calcium carbonate 

content, and relatively low specific heat with considerations to its effect on tensile, elongation, 

pliability, tear resistance, and elasticity properties of the asphalt coating (Shaw 1999). 

 

Figure 10 Asphalt Coating of a Fiberglass Roof Shingle (Dunlop 2003) 

Examples of filler material include fly ash, recycled rubber, recycled shingles, fine 

grained carbonate rock, dolomite, limestone, trap rock, sand, and stone dust.  Limestone has 

dominated the market due to its naturally occurring abundance, satisfactory performance, and 

positive reactions with asphalt as it does not make it brittle or loose granules (Leavell 2006).  It 

possesses a specific gravity of 2.65, which is ideal for weight loadings and viscosity.  Other 

effects on viscosity attributed to the filler are shape in which limestone is blocky and irregular 
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and size distribution, in which limestone has a median diameter is 34.22 microns (0.0013 inches) 

(Leavell 2006). 

However, no single gradation has been established by industry.  A standard of 60-80% of 

the material passing a No. 200 mesh is typical (Leavell 2006).  Similarly, Falkiewicz & 

Maldonado (2010) state that mineral fillers should be between 75-90% smaller than the No. 200 

mesh, and they should be concentrated at 50-70% by weight of the total formulation.  Pagen, 

Stepien, Jr., & Morris (1986) determined a preferred coating formulation for inorganic fiber mat 

based bituminous roofing shingles, which includes 3.2% elastomeric polymer, 39.3% bituminous 

composition, 57.5% trap rock dust stabilizer.  Using recycled rubber, the formula is 3.2% 

elastomeric polymer, 37.2% bituminous composition, 57.5% mineral stabilizer, and 2.1% 

recycled rubber.  Reclaimed rubber is a more cost effective option than polymer modifiers, and it 

improves the durability of asphalt and resistance to ultraviolet radiation (Pagen, Stepien, Jr. and 

Morris 1986). 

2.2.4.3 Aggregate Granules 

While still in its plastic state, the mineral filled coating bitumen receives embedded granules that 

are opaque to ultraviolet radiation (Pagen, Stepien, Jr. and Morris 1986).  Before cooling, 

granules are pressed into the asphalt surface for ultraviolet radiation protection (IKO 2012).  As 

shown in Figure 11, there are three categories of aggregate granules: prime, headlap, and 

backdust.  Prime and headlap granules are referred to as top surface granules, but the difference 

is that prime granules are typically color coated, and headlap granules are not due to the expense 

of ceramic color coating.  Top surface granules are pressed onto the weather exposed face for 

protection from the sun and as a decorative coating.  Backdust particles are applied to the 

underside of the asphalt shingle. 
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Figure 11 Aggregate Granules of a Fiberglass Roof Shingle (Dunlop 2003) 

The top surface granules represent the greatest expense to manufactures, particularly the 

ceramic coated prime granules (Leavell 2006).  Top surface granules provide weight and 

ultraviolet protection due to its opaque features. Without this, bitumen may crack, deteriorate, 

and permit water penetration (Pagen, Stepien, Jr. and Morris 1986).  In humid climates, up to 

10% of granules may be replaced by a special algae-resistant material, which includes copper 

oxide, to prevent premature discoloration (Leavell 2006). 

Materials consist of rock granules coated with colored ceramic for the prime granules, 

and then rock or slag granules with similar gradation for the headlap granules.  Ideal top surface 

materials are either igneous or metamorphic, inherently opaque, and must be resistant to multiple 

heat-thaw cycles.  The granules most widely used are crushed slate, basalt, and trap rock (Pagen, 

Stepien, Jr. and Morris 1986).  Fine grained rocks with minimal mineral cleavage when crushed 

are preferred, and prime and headlap granules should meet the same gradation and should meet 

American Society for Testing and Materials #11 narrow distribution, which resembles coarse 

sand from the 12x40 U.S. Sieve Series mesh (Leavell 2006).  The top surface layer includes 

decorative and protective mineral roofing shingle granules from #5 to about #30 (Leavell 2003).  

Headlap granules consists between 0.2 mm and 2 mm, and prime granules are the exposed color 

coated roofing granules, which typically are relatively higher in cost (Leavell 2003). 



24 
 

Backdust is a fine particulate material on the back surface of a roofing shingle that 

prevents the shingles from sticking together when stacked or rolled (Leavell 2003).  The 

backdust particles isolate the hot asphalt in order to prevent shingles from sticking together when 

packaged.  The backdust carries mineral material which is non-cementitious, such as mica flakes, 

talc, sand, and the like (Bondoc, et al. 1988).   

Finer silt-sized granules are used as backdust, and materials may include talc, crushed 

carbonate, igneous and metamorphic rock fines, crushed glass, slag, and sedimentary silica sand 

(Leavell 2003).  The typical particle size is similar to fine grained sand between 0.04-0.30mm, 

and the gradations are sufficiently fine sand size without significant fines (less than 5-10% of 

200 mesh), with a target gradation of 50x200 on the U.S. Standard Sieves (Leavell 2003). 

2.2.5 Manufacturing Asphalt Roof Shingles 

The manufacturing process of asphalt roof shingles is the same for both organic and inorganic 

shingles, and it can be completed in six basic steps: felt saturation, coating, mineral surfacing, 

cooling and drying, formatting/product finishing, and packaging (Falkiewicz and Maldonado 

2010).  As shown in Figure 12 and Figure 13, shingles are produced by passing the base material 

through a machine that successively adds the other components (Made How 2013). 

Organic felt or fiberglass matting first starts by being fed into a dry looper, and then the 

material is passed through a pre-saturation chamber to be sprayed with hot asphalt to remove any 

moisture and into a saturation tank for soaking and the filling of all voids (Poole 2011).  Felt 

saturation involves saturating the substrate matting material with a low softening point asphalt.  

Asphalt used to manufacture shingles is not in the same state as asphalt used in pavements. 

Shingle asphalt must be oxidized to cause a chemical reaction, which softens the asphalt in order 

to produce a good shingle (Poole 2011).  
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Figure 12 Dry Looping, Saturation, and Wet Looping (Made How 2013) 

Following felt saturation is the coating process, which is the application of the modified 

asphalt coating which includes mineral fillers.  The substrate matting is coated on both sides 

between two coating rollers.  Mineral fillers are added to the asphalt to increase durability.  

While still hot, granules are then applied during the mineral surfacing stage as shown in Figure 

13, and then the sample is allowed to cool and dry to the ambient temperature.  Passing through a 

series of rollers, granules are embedded to the top surface of the asphalt-coated mat, and a 

coating of fine particles of a mineral is applied to the back surface of the mat (Made How 2013). 

 

Figure 13 Coating, Surfacing, Finishing, and Cutting (Made How 2013) 

The material passes through a cooling looper and then into a cutting machine to be cut 

from the backside into the desired size and shape (Made How 2013).  The asphalt product is 

formatted (e.g. rolled or cut) to specific size prior to packaging the finished product (Falkiewicz 
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and Maldonado 2010).  The cut asphalt shingles are stacked into bundles, wrapped, and labeled 

for sale (Poole 2011). 

2.3 Heat Island Effect 

Urban heat islands (UHI) exist when temperatures in urban areas are significantly higher than 

surrounding suburban and rural areas.  UHI is a climatic phenomenon that has an important 

energy and environmental impact on the urban environment, and observations in Athens have 

shown air temperatures of more than 10°C warmer than their surrounding rural areas and an 

increase of up to 70°C on roofing surfaces (Vardoulakis, et al. 2011). 

2.3.1 Consequences of Heat Island Effect 

UHI has a multitude of negative consequences on communities, such as increased energy 

consumption, elevated emissions of air pollutants and greenhouse gases, compromised human 

health, and impaired water quality (U.S. Environmental Protection Agency 2014).  In summer, 

air-conditioning is used for indoor thermal comfort, which increases energy consumption, peak 

energy demand, and energy costs, and where air-conditioning is not used, there is discomfort and 

even death, as occurred in the Chicago heat wave of 1995 (Bretz, Akbari and Rosenfeld 1997). 

High air temperatures have been linked to increased air pollution, such as the accelerated 

formation of smog.  In Los Angeles, eliminating the 3°C (7°F) heat island will lower the average 

air temperature to 22°C (71°F) and may greatly reduce smog episodes (Bretz, Akbari and 

Rosenfeld 1997).  Additionally, the increased use of summertime air-conditioning results in 

emissions of air pollutants, such as carbon dioxide and nitrogen oxides.  

2.3.2 Heat Island Mitigation Strategies 

A major factor contributing to the formation of heat islands are the thermal properties of the 

materials used in urban environments.  Particularly, dark colored surfaces absorb solar radiation 
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during daytime and reradiate it during the night.  Pavements and roofs, which make up a major 

part of urban surfaces, are a replacement for natural vegetation and have a reduced potential to 

decrease ambient temperature through evapotranspiration and shading (Synnefa, Santamouris 

and Livada 2006).  An aerial study of the composition of Sacramento metropolitan area found 

land use as 28% rooftop, 16% streets, and 14% other impervious surfaces, such as parking lots, 

driveways, and sidewalks, with an overall potential for modifying 18% of the urban albedo in 

Sacramento (Bretz, Akbari and Rosenfeld 1997). 

According to the United States Environmental Protection Agency’s (EPA) Heat Island 

Reduction Program, the major strategies and technologies to mitigate urban heat island effects 

include: trees and vegetation, green roofs, cool roofs, and cool pavements.  In order to alleviate 

the UHI adverse effects, several techniques have been proposed like reducing emissions, 

increasing green spaces, using cool materials as construction and roof materials, photovoltaic 

canopies, and super-hydrophilic photo catalyst-coated building surfaces with water film 

(Vardoulakis, et al. 2011). 

2.3.2.1 Trees and vegetative cover 

A simple and cost effective method to reducing heat island effect is to provide trees and other 

vegetation to urban areas, which provide shade and evapotranspiration.  A study of two houses in 

Sacramento during the summer of 1992 showed that shaded surfaces may be 20–45°F (11–25°C) 

cooler than the peak temperatures of surfaces without shade (Akbari, Kurn, et al. 1997).   

When strategically planted around buildings, parking lots, and streets, then benefits to 

communities include reduced energy use, improved air quality, lower emissions, improved 

stormwater quantity and quality management, reduced pavement maintenance (U.S. 

Environmental Protection Agency 2014).  Additionally, evapotranspiration, which is the 
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combination of evaporation and transpiration, is shown in Figure 14 and can help reduce peak 

summer temperatures of up to 9°F (5°C) (Kurn, et al. 1994). 

 

Figure 14 Evapotranspiration (Tsuni 2003) 

Trees and vegetation can also improve quality of life because of their aesthetic value and 

noise reduction capabilities.  Although costs associated with planting trees and vegetation may 

include the initial purchase, planting, and maintenance, the benefits of urban forestry are almost 

always higher than the costs (U.S. Environmental Protection Agency 2014).  In 2005, a study of 

five cities in the United States found that for every dollar invested in the management of urban 

forestry, the benefits returned annually ranged from $1.37 to $3.09 (McPherson, et al. 2005). 

2.3.2.2 Cool Roofs 

Cool roofing products are best suited for hot climates and can be used on urban surfaces to cost-

effectively reduce cooling energy use, improve air quality, and decrease greenhouse gas (GHG) 

emissions from urban areas where roofs constitute a major part of exposed surfaces (Xu, et al. 

2012).  Therefore, it is best to use cool roof coverings that have high solar reflectance and high 
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infrared emittance in order to contribute to heat island mitigation (Kültüra and Türkeri 2012).  

Commercially available cool materials for roofs include cool roof coatings (elastomeric, acrylic, 

etc.), cool single ply membranes, reflective tiles, metal roofs, and the use of cool colors 

(Synnefa, Santamouris and Livada 2006).  A white basecoat and cool color topcoat applied to 

asphalt shingle granules achieved reflectance values as high as 0.45 when the granules were 

covered (Levinson, Berdahl, et al. 2007). 

Roofs with high albedo significantly lower surface temperatures and reduce heat flux 

through the building envelope as compared low albedo surfaces.  During peak summer weather, 

high solar reflectance and emissive materials can remain 50-60°F (28-33°C) cooler than 

traditional materials (Konopacki and Akbari 2001).  With a surface reflectance change from 0.1 

(black roof) to 0.7 (white roof), an energy savings of 46-50 kWh/day per 700 m2 was achieved, 

which represents a 14-26% energy savings (Synnefa, Santamouris and Livada 2006). 

For roofing materials to be regarded as cool, the solar reflectance must exceed a specified 

threshold, which for an asphalt shingled, sloped roof is typically 0.25 (Berdahl, Akbari, et al. 

2012).  Cool roofing alternatives as opposed to conventional roofing materials are usually 

available at nominal initial costs and lower life-cycle costs because of potential longer life 

expectancy and energy savings (Bretz, Akbari and Rosenfeld 1997). 

2.3.2.3 Green Roofs 

Green roofs (i.e. rooftop gardens, eco-roofs, vegetated roofs, etc.) contribute to heat island 

mitigation by providing shade to reduce surface and air temperatures and enhancing the 

evapotranspiration process.  Surface temperatures of green roofs can actually be cooler than the 

air temperature during the summer, compared to temperatures of a conventional roof which may 

be 90°F (50°C) warmer than ambient (U.S. Environmental Protection Agency 2014).  As shown 
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in Figure 15, the four main components of a green roof include water proofing membrane and 

filter membranes, drainage films, growing medium, and vegetation (Saadatian, et al. 2013). 

 

Figure 15 Components of a Green Roof (Saadatian, et al. 2013) 

Green roofs can be implemented on buildings from industrial facilities to private 

residences, and they can be as simple as a 2-inch vegetated covering or as complex as a fully 

accessible park complete with trees (U.S. Environmental Protection Agency 2014).  Although 

the initial cost of green roofs is more than three to six times of the conventional roofs, green roof 

savings are in the form of stormwater and energy efficiency (Saadatian, et al. 2013).  Benefits of 

green roofs include the reduction of energy consumption needed to provide cooling and heating, 

improved air quality, decreased greenhouse gas emissions, enhanced stormwater quantity and 

quality management, improved quality of life, and improved thermal comfort (U.S. 

Environmental Protection Agency 2014). 

2.3.2.4 Cool Pavements  

Cool materials for the urban environment could be roughly divided into two categories: cool 

materials for buildings and cool paving materials.  The term cool pavement applies to materials 

that aim to reduce heat island effect by reflecting more solar energy or increase more water 

evaporation than conventional pavements (U.S. Environmental Protection Agency 2014). 
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Conventional paving materials can reach peak summertime temperatures of 120–150°F 

(48–67°C), transferring excess heat to the air above them and heating stormwater as it runs off 

the pavement into local waterways (U.S. Environmental Protection Agency 2014).  Pavements in 

urban areas comprise of approximately 30–45% of land cover based on an analysis of four 

geographically diverse cities and are an important element to consider in heat island mitigation. 

(Akbari, Rose and Taha 1999). 

An increase in pavement albedo reduces surface and atmospheric temperatures, reduces 

the convection of heat, decreases cooling energy demand, and slows the formation of urban smog 

(Levinson and Akbari 2002).  Benefits of effective cool pavements to communities include 

enhanced stormwater quantity and quality management, lower tire noise, enhanced safety, better 

nighttime visibility, and improved thermal comfort (U.S. Environmental Protection Agency 

2014). 

2.3.2.5 Mitigation Strategies Conclusion 

The consequences of UHI effect are becoming increasingly severe, such as the increase in energy 

consumption, higher cooling demands, poor air quality, increased emissions, smog, thermal 

discomfort, and health effects.  For these reasons, there has been an impetus in research aiming 

to understand the origin of UHI and to develop mitigation measures (Vardoulakis, et al. 2011).  

Despite the initial costs, alternatives that contribute to heat island mitigation may be cost-

effective in terms of life cycle costs. 

2.4 Sustainable Materials Management (SMM) 

The United States Environmental Protection Agency’s Sustainable Materials Management 

(SMM) Program promotes the use and reuse of sustainable materials throughout a product’s life 

cycle, to include recycling, composting, energy recovery, and landfilling.  This approach aims to 
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conserve natural resources, reduce waste, and minimize environmental impacts (U.S. 

Environmental Protection Agency 2013). 

The SMM applies to both consumer’s in their everyday lives as well as industrial supply 

chains, such as by products from coal combustion, foundry sand, iron and steel slag, and scrap 

tires.  Materials such as scrap tires, glass, and roofing shingles are being implemented into 

highway construction (Maupin 1998).  The benefits of reducing and reusing materials include the 

conservation of landfill space, and the reduction of the need to produce new materials from 

virgin resources resulting in economic and environmental benefits (U.S. Environmental 

Protection Agency 2013). 

2.4.1 Construction and Demolition (C&D) Materials 

Wastes materials generated from the construction industry’s supply chain are referred to 

Construction and Demolition (C&D) and are a result of new construction, renovation, or 

demolition projects.  C&D waste may end up municipal solid waste (MSW) landfills, C&D 

landfills, combustion facilities, or unpermitted landfills (U.S. Environmental Protection Agency 

2013).  MSW landfills are designed to dispose household waste while C&D landfills are 

exclusively for C&D materials, and less landfill waste reduces methane gas emissions which 

contribute to global climate change (U.S. Environmental Protection Agency 2013). 

C&D materials may include concrete, wood, drywall, bricks, metals, glass, plastics, and 

salvaged components from buildings, roads, and bridges, and the three largest components 

include concrete, wood, and drywall (Sandler 2003).  Concrete is the most dominant consisting 

of 40-50% of debris generated annually due to its high volume usage in infrastructure, buildings, 

and civil engineering applications (Sandler 2003).  Primarily due to residential construction, 

estimates of wood debris produced annually is approximately 35.1 million tons, which comprises 
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of 20-30% of C&D debris (Sandler 2003).  Drywall debris continues to increase due to its 

prevalence as a finished interior in new residential construction and renovations. 

2.4.2 Recycled Glass 

Glass is comprised of all natural resources that are melted together, such as silica sand, soda ash, 

limestone, glass cullet, and substances to change the color.  For over 400 years, glass has been 

deemed as a safe food and beverage packaging material in the United States (Glass Packaging 

Institute 2010).  Because of its durability, other postconsumer sources of glass include furniture, 

appliances, electronics, and non-food containers, and C&D sources of glass include windows, 

mirrors, and lights. 

According to the Glass Packaging Institute, approximately 13 million tons of glass waste 

are generated annually, and food, soft drink, beer, food, wine, and liquor containers make up 

over 90% of this amount with the remaining 10% coming from cookware, glassware, and home 

furnishings (Glass Packaging Institute 2010).  A study of waste glass from large cities across the 

world determined that about 3-5% of all household waste was from glass (Wu, Yang and Xue 

2004).  However, in the United States, the national glass container recycling rate is 28% as of 

2008 (Glass Packaging Institute 2010). 

The market for the use of recycled glass is primarily with the glass container industry, as 

ninety percent of recycled glass is used to create new containers (Glass Packaging Institute 

2013).  Recycled glass can also be used in kitchen tiles, counter tops, and wall insulation.  Many 

non-container uses of glass cullet include building material applications, concrete aggregates and 

additives, construction aggregate, sand blasting, insulation, paving, art glass, and miscellaneous 

applications such as filters, landscaping, reflective beads, tableware, hydraulic cement, polymer 

deposits, and jewelry (Reindl 2003). 
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However, due to impurities, shipping costs, and mixed color sources, the use of waste 

glass, which has a subangular particle shape and a smooth, flat surface texture in construction 

materials is a productive alternative (Polley, Cramer and de la Cruz 1998).  Major construction 

applications include a partial replacement for aggregate in asphalt concrete, as fine aggregate in 

unbound base course, pipe bedding, landfill gas venting systems, and as gravel backfill for drains 

(Shi and Zheng 2007).  Reddy (1999) concluded that glass cullet was a feasible alternative 

backfill material for retaining structures. 

 The use of recycled materials as alternatives in Portland cement concrete (PCC) is well 

documented (Huang, Shu and Li 2005).  As a fine aggregate, glass cullet below 30% is practical 

along with usage admixtures to obtain desired workability and air content values (Park, Lee and 

Kim 2004).  Glass powder as a replacement to cement of up to 30% was also deemed feasible 

(Shayan and Xu 2004).  In producing self-compacting concrete (SCC), glass cullet is also a 

feasible substitute to replace up to 30% fine aggregate and 15% coarse aggregate with the use of 

fly ash to suppress the alkali-silica reaction potential (Kou and Poon 2009).  As a replacement to 

sand in mortar, glass increased durability but also increased the likelihood of micro-cracking and 

being potentially deleterious to alkali-silica reaction (Tan and Du 2013). 

Glass can be recycled over and over again and has the potential to be reused in a wide 

variety of applications.  Glass recycling increased from 750,000 tons in 1980 to more than three 

million tons in 2011 and using glass cullet has the potential to save money and help the 

environment (Glass Packaging Institute 2013).   

2.5 Building Energy Management 

The building envelope is the physical component that acts as a barrier between external 

environmental conditions and the interior space of a building.  According to the Whole Building 
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Design Guide (WBDG), components of building envelopes include below grade construction, 

exterior structural and nonstructural walls, fenestration (windows, door, and other openings), 

roof systems, and atria.  Functional aspects of a building envelope must include structural 

considerations, water and air resistance, condensation, sound transmission, fire safety, security, 

maintainability, constructability, durability, aesthetics, economics, and last but not least energy 

conservation (National Institute of Building Sciences 2009).   

The building envelope must resist solar heat gain, conduction heat transmission, and 

infiltration heat transmission, and building energy consumption is a result of the demands of 

heating, cooling, lighting, hot water, appliances, and electronics, and energy conservation is 

increasingly important because of its environmental impacts and rising energy costs (Kibert 

2008).  According the Department of Energy (DOE), buildings consume more energy than any 

other sector of the U.S. economy, which includes transportation and industry.  Becoming energy 

efficient is a low cost way to save money, and a 20% reduction of energy use in U.S. buildings 

would result in $80 billion in savings on the $400 billion spent annually on energy bills (U.S. 

Department of Energy 2014).  To spearhead the efforts, further DOE research efforts are aimed 

at developing cost-effective and energy efficient materials and technologies in foundations, 

insulation, roofing and attics, and walls. 

 Akbari, Konopacki, and Pomerantz (1999) performed an energy simulation program for 

11 U.S. metropolitan statistical areas in a variety of climates evaluated the energy savings during 

the summer based on an increase in albedo from 0.25 for all buildings to 0.30 for residences and 

0.45 for commercial buildings.  Utilizing local municipality rates for the price of electricity and 

natural gas, the sum total results for all 11 MSAs are 2.6 terawatt hours in annual electricity 

savings, $194M in net annual savings, and 1.7 gigawatt in peak electricity demand savings.  The 
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entire United States’ savings is estimated annually at 10 TWh and $750M with peak electricity 

power savings at about 7 GW, which at peak demand would result in the avoidance of 13 power 

plants at 0.5 GW capacity (Akbari, Konopacki and Pomerantz 1999). 

 When minimal or no insulation is present in a roofing system and when surface albedo is 

low, then roof heating loads are maximized, making heat gain a dominant component of the total 

cooling load of a building.  Using insulation with an R-30 value, Simpson and McPherson (1997) 

measured reductions in daily total load and hourly peak electrical use for air conditioning by 5% 

by changing from gray shingles (albedo 0.30) to white shingles (albedo 0.75).  When ceiling 

insulation was removed, the air-conditioning reductions from a brown to white was 18% peak 

load and 28% total (Simpson and McPherson 1997). 

Solar reflective materials maintain low surface temperatures in sunlight and have direct 

effects on cooling energy consumption by increasing the exterior albedo and reducing heat 

transfer through the building envelope.  Through the use of reflective roofs in Florida, 

experiments on various building types have resulted in a cooling cost energy savings of 19% and 

a reduction in peak demand of 22% by changing albedo from 0.20 to 0.66 (Parker and Barkaszi, 

Jr. 1997).  In Sacramento, savings of 35% was the result of coating a metal roof with high albedo 

white paint on a bungalow style school (Akbari, Bretz, et al. 1997). 

A study in California showed that cool roof premiums that range between $0.18–0.20 per 

ft2 are found to be cost effective based upon cooling energy consumption, heating or gas 

consumption, net energy savings, cost savings from downsizing cooling equipment, and the cost 

premium for a cool roof (Levinson, Akbari and Konopacki, et al. 2005).  Konopacki and Akbari 

(2001) listed the benefits of whitening a black rubber roof membrane of a large single story retail 

store in Austin from 5% to 83%, which included an 11% or $25 average summertime daily 
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energy savings, a reduced peak demand by 14%, and an annual abated energy expenditures of 

$7200 or 7.2 ¢/ft2.  On the residential scale, an increase in 0.30 reflectance on a 1400 ft2 

residence in Miami can result in daily savings of 5.9 Wh/ft2 or 15% and a reduced peak demand 

of 0.32 W/ft2 or 16% (Konopacki and Akbari 2001).  Cooling cost savings associated with a 

change a roof with higher solar reflectance typically exceeds the heating cost penalty, and 

increasing roof reflectance can lower energy consumption and the size of heating or cooling 

equipment needed (MacDonald, et al. 1989).  

Increasing building energy efficiency can significantly lower costs and reduce pollution.   

The impact of whitening a previously black roof in a metropolitan area was a 14-26% energy use 

reduction and a direct reduction in CO2 of 11-12 kg CO2/m2 of flat roof area (Xu, et al. 2012).  

Additional benefits include higher levels of comfort, impacts to the national economy, 

improvement of energy security, and the protection of the environment (U.S. Department of 

Energy 2014).  
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CHAPTER 3 – EVALUATION OF RECYCLED GLASS CULLET AND 

GLASS MODIFIED FIBERGLASS ROOFING SHINGLES 

3.1 Introduction 

With the gradual depletion of natural resources and the increase in energy prices, there is a 

critical need to preserve energy in construction activities and to implement methods that could be 

environmentally friendly, as well as useful to the industry and the consumers.  The United States 

Environmental Protection Agency (EPA) estimates that 11.5 to 12.8 million tons of glass waste 

are generated every year with only 38% being recovered in various recycling activities (Reddy 

1999, U.S. Environmental Protection Agency 2013).  Most of recycling glass activities focus on 

using glass cullet in the manufacturing of food and beverage containers for re-melt and remold 

applications.  Glass cullet originates from food containers, broken glassware, light bulbs, waste 

of bottles, and others (Reindl 2003).  Recent estimates indicate that every metric ton of recycled 

glass reduces production of carbon dioxide by as much as 315 kilograms during production of 

new glass (U.S. Environmental Protection Agency 2013). 

With the continuous consumption of energy from non-renewable sources, many cities 

world-wide with a population that equals or exceeds 1 million people experience an increase in 

annual mean air temperature of 1-3°C when compared to its surroundings.  Further, evenings can 

experience a difference as high as 12°C (U.S. Environmental Protection Agency 2014).  This 

phenomenon is known as heat island effect.  It is becoming increasingly intense as summertime 

temperatures rise due to global warming.  Exposed and highly absorptive materials used on roofs 

are a major contributing factor to increasing the heat island effect.  Roofs collect energy from the 

sun throughout the day, which results in higher temperatures on adjacent surfaces.  In order to 

mitigate heat island effect, provide thermal comfort, reduce energy demand, and add aesthetic 

value to the environment, communities can implement a variety of sustainable strategies: 
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increasing tree and vegetative cover, building green roofs, using cool roofs, and constructing 

cool pavements (U.S. Environmental Protection Agency 2014).  Since approximately 20% of the 

urban surfaces have roofs, use of cool roofing materials has a great potential to help alleviate 

urban heat islands, reduce energy consumption, and decelerate global warming (Vardoulakis, et 

al. 2011).  With the need to recycle glass, there is a strong potential to reduce glass waste while 

attempting to reduce thermal loading on buildings, as well as alleviate heat island effect. 

The objective of this study was to evaluate the feasibility of integrating recycled glass 

cullet in the manufacturing of fiberglass roof shingles and to investigate the interactions that 

occur when recycled glass cullet is blended with traditional roofing materials.  The impact of 

diverting materials from disposal and reusing Construction and Demolition (C&D) materials 

includes reduced extraction and consumption of virgin resources.  Glass food and beverage 

containers can be recycled endlessly, and economic benefits of the reuse of glass include: cullet 

cost less than raw materials, reduces energy demand, prolongs furnace life, and creates 8 jobs for 

every 1,000 tons recycled (Glass Packaging Institute 2013).   Environmentally, benefits include 

the reduction of emissions, energy consumption, consumption of raw materials, and waste 

ending in landfills.  For every six tons of recycled container glass used, a ton of carbon dioxide, a 

greenhouse gas, is reduced (Glass Packaging Institute 2013). 

3.2 Background 

3.2.1 Recycling Practices of Glass Cullet 

Recycling of glass cullet can be categorized into two main groups: (1) new glass and bottle 

containers; and (2) other applications.  Secondary recycling applications are categorized into 

eight main groups (Reindl 2003): (1) building materials; (2) concrete production; (3) 

construction aggregates; (4) industrial mineral uses; (5) building insulation; (6) asphalt paving; 
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(7) remelt; and (8) others.  While the recycling of glass cullet is beneficial in most applications, 

the performance of the product should not be compromised as compared to products prepared 

with virgin materials.  Numerous advantages can result from the recycling of glass cullet: (1) 

reduced emissions and energy consumption during processing and manufacturing of virgin 

materials; (2) reduced consumption of virgin materials; (3) diminished consternation of public 

concerning emissions; (4) improved economic competitiveness of construction and 

manufacturing; and (5) reduced glass cullet disposed in landfills. 

Research studies conducted on the use of glass cullet in secondary applications showed 

promising results.  Glass-asphalt (glasphalt) has been used since the 1960s with a content of 

glass cullet ranging from 10 to 15% (Arabani 2011).  Given its high reflectivity especially at 

night, the use of glass cullet was reported to improve driving conditions and to provide less 

hazardous driving.  In addition, the use of glass cullet improved frictional resistance due to the 

angularity of glass particles and the mix fracture strength.  However, given their high silica 

content, glass-asphalt is more susceptible to moisture damage but is less susceptible to 

temperature changes in comparison to regular asphalt mixes.  A study was conducted to evaluate 

the use of glass cullet in the production of glass-ceramics in combination with fly ashes and steel 

slags (Karamberi, Orkopoulos and Moutsatsou 2007).  Ten sources of glass cullet were tested by 

melting at 1450°C.  Produced mixes were evaluated using x-ray diffraction and scanning electron 

microscopy.  A study examined the chemical reactions taking place when glass cullet is used as a 

partial cement replacement in concrete (Dyer and Dhir 2001).  It was reported that given its high 

content of sodium and silicon, glass cullet can cause harm to concrete through the alkali-silica 

reaction.  However, this failure mechanism can be avoided by including pozzolans in the 

concrete mix design.  
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3.2.2 Asphalt Roofing Shingles 

Asphalt roofing products are a common roofing application in the United States given their 

economic competitiveness and ease of installation.  The most common asphalt roofing product is 

asphalt shingles, which account for approximately 85% of roofing products used in the 

residential sector of the United States (Leavell 2006).  A fiberglass roofing shingle is comprised 

of four major components: a substrate, asphaltic coating with mineral fillers, surface granules, 

and backdust.  To produce conventional shingles, fibrous matting serves as the substrate and 

becomes impregnated by asphalt.  The asphaltic coating, which includes mineral filler material, 

is heated so that it fully coats and impregnates the fiberglass matting.  Then, the roofing granules 

are pressed onto the top surface prior to cooling to provide the finished appearance so that 100% 

coverage is achieved.  The shingle is then cooled, and the back surface is reheated so that the 

backdust dust material when applied will achieve 100% coverage of the backside. 

Conventional materials used to produce shingles include fiberglass matting as the 

substrate, air-blown asphalt as the coating material, and aggregates.  Aggregates are classified by 

particle size as top surface granules, filler material, or backdust particles. Typical particle sizes 

are listed in Table 2.   

Table 2 Typical Particles Size Usage on Roofing Shingles 

Shingle Component Particle Size Range U.S. Standard Sieve 

Top Surface Granules 2.36mm - 595µm Mesh #8 - #30 

Backdust Particles 595µm - 75µm Mesh #30 - #200 

Mineral Filler Material 150µm - 45µm Mesh #100 - #325 

 
Materials most widely used as top surface granules include crushed slate, basalt, and trap 

rock (Pagen, Stepien, Jr. and Morris 1986).  Finer silt-sized granules are used as backdust, and 

ideal materials are non-cementitious minerals, such as mica flakes, talc, or sand (Bondoc, et al. 
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1988).  Examples of filler material include fly ash, recycled rubber, recycled shingles, fine 

grained carbonate rock, dolomite, trap rock, sand, stone dust, and limestone.  Limestone has 

dominated the market due to its naturally occurring abundance, satisfactory performance, and 

positive reactions with asphalt as it does not make it brittle or loose granules (Leavell 2006). 

3.2.3 Heat Island Effect 

Urban heat island (UHI) occurs when temperatures in urban areas become significantly higher 

than their surrounding areas.  UHI is a climatic occurrence that has a vital impact on energy 

consumption and the environment in urban areas (Kültüra and Türkeri 2012).  Figure 16 displays 

day and night temperature differences between rural and urban areas, which may be attributed to 

UHI as well as the cooling effect that parks, open land, and bodies of water have on rural areas 

(U.S. Environmental Protection Agency 2014).  Research shows that many cities around the 

world have average daytime air temperatures during the summer 5.6°C warmer than their 

surrounding undeveloped areas (Synnefa, Santamouris and Livada 2006). 

The primary cause of heat island effect is urbanization, which causes city-scale climate 

modification as a result of the development of the earth’s surface and the removal of natural 

vegetation.  Heat transfer from absorptive surfaces and the radiation of buildings contribute to 

heat island effect, and the removal of natural vegetation reduces shading and evaporative cooling 

(Bretz, Akbari and Rosenfeld 1997).  Heat island effect is caused by the use of high solar 

radiation absorbing materials and the lack of green surfaces (Kültüra and Türkeri 2012).  UHI is 

becoming increasingly more problematic in urban areas and is changing the microclimate in 

those areas.  During the summertime, increasing temperatures will increase the surface 

temperatures of building envelopes, surfaces, and infrastructures, which results in an intensified 

UHI effect (Xu, et al. 2012). 
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Figure 16 Heat Island Temperature Variance (U.S. Environmental Protection Agency 2014) 

3.3 Experimental Program 

The objective of the experimental program was to evaluate the suitability of incorporating 

recycled glass into the manufacturing process of asphalt roofing shingles and to test the 

hypothesis that the use of recycled glass will increase solar reflective properties without affecting 

performance of asphalt roof shingles.  Table 3 provides an overview of the experimental 

conditions, variables, and properties testing.   

The experimental program was divided in two phases.  The first phase of the 

experimental program was to characterize the engineering properties of glass cullet in 

comparison to conventional materials used in producing fiberglass shingles.  The engineering 

properties of interest included particle size distribution, specific gravity, absorption, void 

content, and soundness.  The second phase consisted of preparing laboratory shingles in order to 

measure and compare the solar reflective properties and strength performance of conventional 

and recycled glass roof shingles.   
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Table 3 Description of the Experimental Program 

Variable 

Number 

of 

Levels 

Description 

Type of Aggregate  

Location: Top Surface Granules 
4 

Green Glass 

Clear Glass #1 

Clear Glass #2 

Conventional Materials 

Usage of Pigment 2 
Included with Surface Granules 

Not included with Surface Granules 

Phase I: Testing of Aggregate 

and Asphalt Binder 

N/A 

 

Particle Size Distribution 

Specific Gravity 

Absorption 

Void Content  

Soundness 

Rotational Viscosity 

Phase II: Testing of Shingle 

Performance 
N/A 

Reflectance and Emittance 

Tear Strength 

 
Conventional and recycled-glass modified fiberglass reinforced asphalt roofing shingles 

were prepared in the laboratory by varying the amount of glass cullet and conventional materials 

used in asphalt roof shingles, and acceptability was based upon the standard specifications 

described in ASTM D3462.  Table 4 provides a summary of the testing methods used in this 

study. 

Table 4 Summary of ASTM Test Methods Specifications 

Property Test Methods Program Phase 

Particle Size Distribution ASTM C136, ASTM D422 I 

Specific Gravity and Absorption ASTM C128 I 

Void Content  ASTM C1252 I 

Soundness ASTM C88 I 

Rotational Viscosity ASTM D4402 II 

Reflectance & Emittance ASTM E903, ASTM E408 II 

Tear Strength ASTM D1922 II 
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3.3.1 Materials Description and Processing 

Three sources of recycled glass cullet were collected from C&D processing plants.  Each source 

was presorted by color and included one source of green glass and two sources of clear glass.  

Approximately 85% of the glass fragments received was larger than the maximum size aggregate 

(2.36mm) used in producing asphalt roof shingles and needed to be processed into a smaller size.  

With the use of a high performance mixer, the fragments were reduced, sieved, and fractionated 

into sizes used in the production of conventional shingle particle sizes, see Table 2.  The glass 

particles were then utilized in lieu of conventional mineral aggregates as top surface granules, 

filler material, and backdust particles. 

Conventional shingle aggregates were collected and included ceramic coated roofing 

granules for the top surface, high calcium limestone filler material, and crushed limestone (stone 

dust) as the backdust.  The #11 grade top surface igneous roofing granules were coated with a 

black ceramic pigment and were comprised of pulaskite, which is variation of syenite with little 

or no quartz.  The limestone filler material was a ground Calcium Carbonate product (96.65% 

CaCO3) with 98% passing the U.S. Standard Sieve Mesh #50 (0.300mm) and 70% passing the 

#200 mesh (0.075mm).  For the backdust, crushed limestone #10 was obtained, reduced, and 

then sieved to the required size and amount.  Materials used to produce both conventional and 

glass modified shingles included air blown asphalt binder and fiberglass matting.  The binder 

consisted of oxidized air-blown asphalt that is suitable for use as shingle coating.  The fiberglass 

mat consisted of a non-woven web of glass fibers and served as the substrate for the shingle. 

A white pigment powder was used in the fabrication of the asphalt shingles.  To this end, 

the powder was mixed, saturated, and oven-dried with the glass surface granules prior to 

placement on the surface of the asphaltic coating.  The powder consisted of 98% pure titanium 
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dioxide (TiO2) and was added at 8% by weight of the top surface granules.  The anatase-based 

ultra-fine powder had a specific gravity of 3.9.  The cool roof attributes of the modified shingle 

samples were evaluated with and without the addition of pigment powder. 

3.3.2 Asphalt Shingle Preparation 

In order to prepare fiberglass reinforced asphalt shingles in the laboratory, the process was 

divided into three steps: preparation of the formwork, preparation of the asphalt blends, and 

aggregate preparation.  The preparation of the formwork included the thorough cleaning of an 

ample working surface for the placement of a fiberglass mat substrate and then securing metal 

forms to ensure uniform dimension of the prepared samples.  The sample dimensions were 3” x 

3” x 1/8” for solar reflectance testing and 3” x 2.5” x 1/8” for tear strength testing.  Figure 17 

shows the substrate fiberglass material and the placement of the metal forms. 

 

Figure 17 Fiberglass mats placed in formwork 

Prior to pouring the asphalt binder in the prepared forms, all aggregates were weighted 

and fractionated to produce the samples described in Table 5.  For the specimens that did not 

include pigments, the following weights were used per sample: 25 grams of top surface granules, 
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5 grams of backdust, and 23.4 grams of filler materials.  The second embodiment consisted of 

the addition of the white (titanium dioxide) pigment powder to the surface granules.  To include 

pigment powder, two grams of powder were mixed with 23 grams of surface granules, saturated 

with water, and then oven-dried.  The filler material was then uniformly mixed with 12.6 grams 

of liquefied asphalt binder for each sample, which was heated to 204°C.  After mixing the filler 

material, 36 grams of asphaltic mixture was reheated to become liquefied at 230°C.  The 

asphaltic mixture was then poured in the formwork of each shingle and then placed into the oven 

at 204°C for impregnation of the fiberglass.  After one hour, the samples were removed from the 

oven and firm pressure was applied on the top surface granules in order to achieve 100% surface 

coverage.  Upon cooling of the shingles, the forms were removed and the shingles were 

separated from the working surface by applying heat using a forced air heat gun.  Finally, the 

backdust particles were applied to the back surface while keeping the underside heated. 

Table 5 Description of the Shingle Specimens 

Sample ID Top Surface Material Filler Material 

X1 Control 1: Ceramic Coated Granules Limestone 

X2 Control 2: Ceramic Coated Granules Clear Glass 1 

A Green Glass Limestone 

B Clear Glass 1 Limestone 

C Green Glass Green Glass 

D Clear Glass 1 Clear Glass 1 

C1 Green Glass & Pigments Green Glass 

D1 Clear Glass 1 & Pigments Clear Glass 1 

G1 Clear Glass 2 & Pigments Clear Glass 2 
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3.3.3 Reflectance and Emittance Testing 

The main purpose of using recycling of broken and waste glass cullet in the manufacturing of 

asphalt roofing shingle is to alleviate heating and cooling loads in buildings by reducing solar 

heat flux on the roof and heat island effects by increasing the reflectivity of the roof.  To assess 

this ability, samples were exposed to a controlled light source from a spectrophotometer in order 

to measure solar reflective properties in accordance with the Standard Test Method for Solar 

Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres (ASTM 

E903).  Solar absorptance and reflectance were measured by using a spectroreflectometer with an 

absolute integrating sphere, 15°/h (Model: LPSR 200IR, AZ Technology) as shown in Figure 18.  

Measurements of emittance were produced by a spectrafire, shown in Figure 19, with an absolute 

ellipsoidal cavity, 15°/h (Model: TESA 2000, AZ Technology).   

Prepared samples for reflectance testing are presented in Table 5; sample dimensions 

were 3” x 3” x 1/8”.  To consider variability in reflectance and emittance measurements, two to 

six readings of three replicates were conducted. 

 

Figure 18 Spectrophotometer Instrument for Reflectance Measurements 
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Figure 19 Spectrafire Instrument for Emittance Measurements 

Calculations of Solar Reflectance Index (SRI) under standard solar and ambient 

conditions are based on Approach II of the Standard Practice for Calculating Solar Reflectance 

Index of Horizontal and Low-Sloped Opaque Surfaces (ASTM E1980).  Based upon 

measurements of solar absorptance (!) and thermal emissivity (") of the shingle samples, the 

SRI was calculated for three convective coefficients (ℎ�) that correspond to low, medium, and 

high wind conditions at 5, 12, 30 W·m–2·K–1, respectively: 

��# = 123.97 − 141.35$ + 9.655$�  

$ =
(	
�.����)(.������)

(�.��������)
  

3.3.4 Tear Strength Testing 

To assess roof shingle tear strength, prepared asphalt shingles were tested using a pendulum tear 

strength tester according to the Standard Test Method for Propagation Tear Resistance of Plastic 

Film and Thin Sheeting by Pendulum Method (ASTM D1922).  Tear strength was conducted 

using an Elmendorf-type tearing tester (Model: Mechanical Elmendorf Tear, Thwing-Albert).  

Glass-modified shingles were compared to industry minimum strength performance standards as 
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specified in Standard Specification for Asphalt Shingles Made from Glass Felt and Surfaced with 

Mineral Granules (ASTM D3462).  To measure the directional tear strength, samples C1 and D1 

(Table 5) were formed as a rectangle, and the sample dimensions were 3in x 2.5in x 1/8in.  Two 

sets of each specimen were prepared such that ten measurements were conducted in both the 

longitudinal and the transverse directions. 

3.4 Results and Analysis 

3.4.1 Particle Size Analysis 

One source of green glass cullet and two clear glass sources were collected from C&D 

processing plants and were analyzed to determine the particle size distribution.  The results of the 

sieve analysis for each glass cullet type are shown in Figure 20 as a cumulative particle-size 

distribution curve.  As shown in this figure, the glass cullet was determined to be coarse grained 

and consisted of 55-67% greater than 4.75mm, 32-44% between 0.075-4.75mm, and 0.2-0.08% 

less than 0.075mm in size.  The nominal maximum aggregate size of each collected glass cullet 

was 19.0mm.   

 

Figure 20 Cumulative Particle Size Distribution Curve of Recycled Glass Cullet 
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Table 6 illustrates the particle size characteristics of the three sources of glass cullet.  

Based on these characteristics, collected glass cullet sources appear to be well-graded.  However, 

glass cullet sources are too coarse to be directly used in glass-modified asphalt shingles without 

processing.  

Table 6 Characteristics of Recycled Glass Cullet Sources 

Characteristics Green Glass Clear Glass 1 Clear Glass 2 

Coefficient of Uniformity (Cu) 4.01 4.52 4.21 

Coefficient of Curvature ���� 1.43 1.07 1.41 

Fineness Modulus (FM) 5.63 5.34 5.63 

 
The glass cullet particle sizes were reduced with the use of a commercial grade blender 

with 4” blades and were then fractionated into sizes suitable for use in roof shingles as top 

surface granules (2.36mm – 595µm), backdust particles (595µm – 75µm), and filler material 

(150µm – 45µm). 

The cumulative particle size distribution curves of the ground glass cullet are shown in 

Figures 21, 22, and 23, as compared to the particle sizes of conventional aggregate used as top 

surface granules, backdust particles, and filler material.  Results show that the laboratory 

grinding process effectively reduced the size particles of the recycled glass cullet and the 

nominal maximum aggregate size of the glass cullet, rendering it the same as conventional 

ceramic coated top surface granules at 2.36 mm with 7.4 to 7.7% fines.  The fineness modulus 

was calculated for each aggregate type, and glass sources and ranged from 2.59 to 2.78 whereas 

the markedly smaller conventional aggregate fineness modulus was 1.93. 
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Figure 21 Cumulative Particle Size Distribution Curve of Top Surface Granules 

 

Figure 22 Cumulative Particle Size Distribution Curve of Backdust Particles 
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Figure 23 Cumulative Particle Size Distribution Curve of Filler Material 
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revealed that there was no significant difference between the mean absorption values for all 

sources of glass cullet and the high calcium limestone filler.  With respect to aggregate 

soundness, the three sources of glass cullet performed significantly better than the crushed 

limestone backdust. 

Table 7 Comparison of Specific Gravity, Absorption, and Soundness 
 

Type of Aggregate 

Specific 

Gravity 

(OD) 

Specific 

Gravity 

(SSD) 

Specific 

Gravity 

(Apparent) 

Absorption 

(%) 

Soundness 

(% Loss) 

Grinded Green Glass 2.46 2.47 2.48 0.35 4.8 

Grinded Clear Glass 1 2.48 2.49 2.50 0.34 6.0 

Grinded Clear Glass 2 2.47 2.48 2.50 0.40 4.9 

Ceramic Coated Granules 2.56 2.58 2.62 0.83 2.8 

Crushed Limestone 

Backdust 
2.60 2.64 2.72 1.65 8.8 

High Calcium Limestone 

Filler 
2.54 2.55 2.57 0.41 N/A 

 
3.4.3 Void Content 

Table 8 shows the uncompacted void content of processed glass cullet and conventional 

aggregates.  Results of a one-way ANOVA were significant for each aggregate layer.  For top 

surface granules, each glass source had a greater percentage of void content with a Minimum 

Significant Difference (MSD) value of 0.2624%.  Similarly, glass particles used as a backdust 

had more void content compared to conventional aggregate.  For the filler material, each glass 

source had significantly less void content than the conventional aggregates at a significant level 

of 0.001.  With an MSD value of 0.9758, Clear Glass 1 and Clear Glass 2 were grouped together, 

but were significantly different from both Green Glass and the conventional aggregates. 
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Table 8 Uncompacted Void Content Analysis 

 

Green 

Glass 

Clear 

Glass 1 

Clear 

Glass 2 

Conventional 

Aggregates 

Top Surface Granules (595µm - 2.36mm) 46.8% 48.1% 49.9% 45.4% 

Backdust Particles (75µm - 595µm) 48.5% 51.2% 52.5% 47.9% 

Filler Material (45µm - 150µm) 48.7% 50.1% 50.5% 51.5% 

  
3.4.4 Rotational Viscosity 

Table 9 presents the mean rotational viscosity results, which shows the measurements of coating 

blends at high temperatures.  The results show that the addition of filler materials to air blown 

asphalt increased viscosity.   A t-test statistical analysis with 95% confidence level was 

performed to compare the viscosity of air blown asphalt to all other blends with filler, and the 

results were significant (P-value = 0.0001).  

Table 9 Rotational Viscosity (RV) Results 

Asphalt Coating Blend Temperature (˚C ) Viscosity (Pa*s) 

100% Air Blown Asphalt 204 0.332 

35% Asphalt / 65% Limestone 204 2.75 

35% Asphalt / 65% Green Glass 204 1.10 

35% Asphalt / 65% Clear Glass 1 204 4.61 

35% Asphalt / 65% Clear Glass 2 204 5.67 

 
In comparison to the limestone filler material, green glass fillers decreased viscosity, and 

both sources of clear glass filler material increased viscosity measurements at 204°C.  To 

statistically compare the results, a one-way ANOVA was conducted, and the differences were 

significant (P-value=0.0209).  The Tukey post hoc analysis produced two different groupings.  
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Group A included all blends with the exception of 100% Air Blown Asphalt, and Group B 

consisted of all blends with the exception of Clear Glass 2. 

3.4.5 Reflectance, Emittance, and Solar Reflective Index (SRI) 

The mean solar reflectance and thermal emittance results are summarized in Table 10.  In 

general, reflectance results were influenced only by the top surface material employed and were 

unaffected by the type of filler material used.  Figure 24 shows the ceramic-coated roofing 

granules on the top surface of the conventional shingles and compares it to the shingles prepared 

with top surface glass granules, with and without the addition of white pigment powder. 

To measure the effectiveness of glass cullet as a top surface material, mean reflectance 

values were compared for samples with the same filler material.  Samples A, B, C, and D include 

glass cullet as a top surface material, which resulted in an increased reflectance as compared to 

Samples X1 and X2.  The utilization of glass cullet as top surface granules resulted in a mean 

reflectance range increase from 0.029 to 0.050.  T-test statistical analyses with 95% confidence 

level were performed and showed significance for Samples X1 vs. A (P-value = 0.004), Samples 

X1 vs. B (P-value = 0.015), and Samples X2 vs. D (P-value = 0.0005).   

Although the increase was statistically significant, glass granules on the top surface alone 

do not meet cool roof specifications.  Samples C1, D1, and G1 represent the addition of a white 

pigment powder to enhance the reflectance performance of the glass-modified shingles.  The 

addition of white pigment powder to the top surface granules resulted in a mean reflectance 

increase from 0.168 to 0.194 for the samples with glass cullet top surface granules.  T-test 

statistical analyses with 95% confidence level were conducted and showed significance 

differences for Samples C vs. C1 (P-value < 0.001) and Samples D vs. D1 (P-value < 0.001).  

The overall mean increase in reflectance from conventional materials to top surface glass 
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granules with pigments was 0.218.  A t-test statistical analyses with 95% confidence level was 

performed and showed significant differences for Samples X2 vs. D1 (P-value < 0.001). 

     
                          (a)                                 (b)                                  (c) 

 

       
                 (d)                                   (e)                                  (f)                                  (g) 

   
(h)                                   (i) 

 

 

Figure 24 Qualitative Comparisons of the Top Surface of Shingle Samples Prepared: (a) Green 
Glass Top Surface with Limestone Filler, (b) Green Glass Top Surface with Green Glass Filler, 
(c) Green Glass & Pigments Top Surface with Green Glass Filler, (d) Clear Glass 1 Top Surface 
with Limestone Filler, (e) Clear Glass 1 Top Surface with Clear Glass 1 Filler, (f) Clear Glass 1 
& Pigments Top Surface with Clear Glass 1 Filler, (g) Clear Glass 2 & Pigments Top Surface 
with Clear Glass 2 Filler, (h) Ceramic Coated Granules Top Surface with Limestone Filler, (i) 

Ceramic Coated Granules Top Surface with Clear Glass 1 Filler. 

Scale 1:1 



58 
 

Statistical analysis also showed that the type of filler material had no significant effect on 

the mean reflectance values.  T-test statistical analyses with 95% confidence level showed no 

significant differences for Samples X1 vs. X2 (P-value = 0.15), Samples A vs. C (P-value = 

0.500), and Samples B vs. D (P-value = 0.865).   

On the other hand, thermal emittance results were relatively unaffected by the differing 

top surface and filler materials.  The largest mean difference between all samples was 0.027, 

which was the mean difference between Samples B and G1.  The utilization of green glass on the 

top surface resulted in a mean increase of 0.011 compared to ceramic coated granules.  However, 

the utilization of clear glass as tops surface granules resulted in a mean decrease ranging from 

0.006 to 0.011.  T-test statistical analyses with 95% confidence level were performed and 

showed significant differences for Samples X1 vs. A (P-value = 0.011), but insignificant 

differences for Samples X1 vs. B (P-value = 0.086), and Samples X2 vs. D (P-value = 0.3606). 

The addition of white pigment powder mixed with the top surface granules had no 

significant effect on the emittance.  T-test statistical analyses with 95% confidence level were 

performed and showed no significant differences between Samples C vs. C1 (P-value = 0.7069), 

Samples D vs. D1 (P-value = 0.0622), and Samples X2 vs. D1 (P-value = 0.3637).  The use of 

glass as a filler material versus high calcium limestone filler had mixed effects on the emittance 

results.  T-test statistical analyses with 95% confidence level were performed and showed 

significance for Samples A vs. C (P-value = 0.024), but insignificant differences between 

Samples X1 vs. X2 (P-value = 0.9224) and Samples B vs. D (P-value = 0.4810). 

Calculations of Solar Reflectance Index (SRI) at convection coefficients corresponding to 

low, medium, and high wind conditions are presented in Figure 25 and Table 10.  Calculations 

are based on approach II listed in ASTM E1980 using the reflectance and emittance results 
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presented in Table 10.  As shown in these results, the three samples with pigments (C1, D1, and 

G1) resulted in SRI values over the cool roof materials threshold; and therefore, can be used to 

construct a cool roof. 

 

Figure 25 Solar Reflectance Index (SRI) Measurements  
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Table 10 Results of Reflectance, Emittance, and Solar Reflective Index (SRI) 

ID 

Material Composition 
Solar 

Reflectance 

Thermal 

Emittance at 

300K 

Convection Coefficient 

Top Surface Filler 
Low Med High 

5 W/m²K 12 W/m²K 30 W/m²K 

X1 
Control 1: Ceramic 

Coated Granules 
Limestone 0.040 0.917 -0.1 0.1 0.2 

X2 
Control 2: Ceramic 

Coated Granules 
Clear Glass 1 0.036 0.917 -0.6 -0.4 -0.2 

A Green Glass Limestone 0.069 0.928 4.4 4.3 4.2 

B Clear Glass 1 Limestone 0.090 0.906 5.2 5.6 6.1 

C Green Glass Green Glass 0.069 0.918 3.6 3.7 3.9 

D Clear Glass 1 Clear Glass 1 0.086 0.911 5.1 5.5 5.8 

C1 
Green Glass & 

Pigments 
Green Glass 0.263 0.917 28.0 28.1 28.3 

D1 
Clear Glass 1 & 

Pigments 
Clear Glass 1 0.254 0.921 27.1 27.2 27.2 

G1 
Clear Glass 2 & 

Pigments 
Clear Glass 2 0.275 0.933 30.6 30.4 30.2 
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3.4.6 Tear Strength 

Initial testing involved two sets of Samples (C1 and D1) so that ten measurements could be 

obtained in both the longitudinal and transverse directions.  However, the results of initial tear 

strength testing were inconclusive as no readings could be obtained within the equipment ranges.  

In spite of using the heaviest pendulum (6400gf) available for the Elmendorf device, the 

pendulum was unable to swing freely to tear the specimen, as the mass of the pendulum was 

supported by the sample.  As shown in Figure 26, the tear began slowly, and then the shingle 

cracked at the jaw face and perpendicular to the tearing direction. 

 

Figure 26 Tearing Behavior of Glass Modified Laboratory Produced Asphalt Shingles 

 In order to collect tear strength readings, the experiment was repeated by modifying the 

procedure to produce thin laboratory shingles as shown in Figure 27.  The amount of coating was 

decreased from 36 to 26 grams, which was the thinnest specimen achievable using the 

procedures outlined in the experimental plan.  However, as shown in Table 11, similar behaviors 

were exhibited when testing the thin specimens.   
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Table 11 Results of Elmendorf Tear Strength Testing of Thin Samples 

 

Specimen
Tearing Force (gf) 

Machine Direction
Tearing Behavior

Tearing Force (gf) 

Transverse Cut
Tearing Behavior

Tearing Force (gf) 

Machine Direction
Tearing Behavior

Tearing Force (gf) 

Transverse Cut
Tearing Behavior

1 5250 Tore straight 6370 Tore straight 3780 Tore across 6270 Tore across

2 5470 Tore across >6400 Did not tear 5630 Tore across 5120
Tore across on top;

Tore straight on bottom

3 >6400 Did not tear >6400 Did not tear 5220 Tore across >6400 Did not tear

4 >6400 Did not tear 5380 Tore across 5150
Tore across on top;

Tore straight on bottom
>6400 Did not tear

5 5060 Tore straight >6400 Did not tear >6400 Did not tear 6050 Tore straight

6 5150 Tore straight >6400 Did not tear 4380 Tore across 5090 Tore straight

7 >6400 Did not tear >6400 Did not tear 5730
Tore across on top;

Tore straight on bottom
>6400 Did not tear

8 5310
Tore across on top;

Tore straight on bottom
4740 Tore straight 3460 Tore across 5950 Tore across

9 >6400 Did not tear >6400 Did not tear 3940 Tore straight >6400 Did not tear

10 4480
Tore across on top;

Tore straight on bottom
>6400 Did not tear >6400 Did not tear >6400 Did not tear

Average 5120 5497 4661 5696

Sample C1 Sample D1
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(a)                                                                  (b) 

Figure 27 Comparison of Shingle Thickness: (a) Initial specimen using 36 grams of asphalt 
coating, (b) Thin specimen using 26 grams of asphalt coating. 

It is recommended that further laboratory testing of the tear strength of shingles 

incorporating glass cullet be performed.  To determine conclusive tear resistance values of glass-

modified shingles, it is recommended to develop assembly methods that decrease the thickness 

of the coating layer of laboratory samples and to pursue the use of industrial manufacturing 

processes in order to evaluate the effects of glass fillers on actual production samples. 

3.4.7 Economic Evaluation of Glass Modified Asphalt Shingles 

The supply and competitive sale of cullet are based upon regional fluctuations that are affected 

by municipal recycling and sorting programs, collection and waste diversion methods, municipal 

incentive based options, costs of processing, and transportation costs (U.S. Environmental 

Protection Agency 2013).  To take advantage of the economics in major metropolitan areas 

where glass collection is high, municipalities achieve savings because the cost of collecting and 

processing waste glass is lower than disposal costs (Gadja and VanGeem 2001).  Nationwide 

landfilling costs range from $20-100 per ton of waste, and in places where landfilling prices are 

high, waste glass is abundantly available and may be economical (Woolverton 1996). 

 The supply of cullet will increase as glass recovery efforts become more efficient in color 

sorting, crushing to size specifications, and the removal of debris.  Recent technological 
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advances include glass beneficiation plants that use optical and x-ray technologies that take 

mixed cullet with contaminants, then remove the contaminants, crush, wash, and sort the glass 

into flint, green, and amber glass (Bohlig and Duffy 2007). 

 The container industry is the primary end user of recycled glass and requires cleaned, 

crushed, and color sorted cullet to produce new glass containers at a lower rate than extracting 

virgin resources.  In 1992, container companies purchased cullet at approximately $50 per ton, 

which set the competitive market for other industries seeking to use cullet (U.S. Environmental 

Protection Agency 2013).  In 1996, container glass cullet was $60 per ton for furnace ready 

cullet (Nash, et al. 1996).  Strategic Materials, Inc. (SMI) is the largest recycler in the United 

States with over 40 locations, and SMI’s Glass Division stated that cullet is sold to fiberglass and 

glass manufactures at $80-100 per ton.  A separate quote was obtained from Dlubak Glass 

Oklahoma who specializes in the resale of plate glass cullet for $78-88 per ton. 

 Because of less stringent debris specifications, the construction industry is able to utilize 

mixed cullet and container cullet residuals.  In order to process waste glass to meet the 

specifications of construction applications, the waste glass must be collected, cleaned, crushed, 

and screened to remove metals, plastics, paper, organics, and deleterious matter.  Reddy (1999) 

performed a material cost comparison of glass cullet to sand as a backfill material and showed 

that cullet as a construction aggregate achieves an average cost savings of 50%, depending upon 

location, availability of conventional and recycled materials, and quality specifications. 

 Another common application of mixed glass cullet is glasphalt, and the economics of 

glasphalt are dependent upon the price of glass, hauling, crushing, and cleaning, as compared to 

conventional aggregate prices.  However, the quantities of glass aggregate required for asphalt 

producers, besides New York City where asphalt plants are municipally owned, to continually 
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incorporate the material into their product are often prohibitive (Meyer, Egosi and Andela 2001, 

U.S. Department of Transportation 2012).  Glasphalt has been successfully installed in New 

York, New Jersey, Maryland, Virginia, Connecticut, Minnesota, Iowa, Washington, and others, 

and while savings of $1 per ton has been achieved, installing glasphalt has also resulted in cost 

increases of $5-15 per ton (Watson 1988, Ahmed 1991, U.S. Environmental Protection Agency 

1992, Schroeder 1994, Gadja and VanGeem 2001). 

 In certain regions, economic incentives for cullet suppliers and construction contractors 

are necessary for the viability of glass cullet in construction applications to offset transportation 

costs and compete with conventional aggregate prices (Clean Washington Center 1996).  Despite 

the higher costs of construction where the market for trucking in glass is not economical in parts 

of Minnesota, aggregate amendments in road construction bid specifications make it mandatory 

to use a 10% blend of recycled glass by weight in order to avoid costs in color sorting stockpiled 

mixed-broken glass (Minnesota Pollution Control Agency 2011).  

With the right local conditions, mixed glass cullet as a construction aggregate can be 

competitive with conventional aggregates (Nash, et al. 1996).  The price of cullet is lower than 

hauled-in stone aggregate in Adams County, Wisconsin as aggregate pricing varies from location 

to location, and is a function of raw sourcing and the distance required for transport (Resource 

Recycling 2005).  In 1996, a recycling plant in Houston quoted unsorted glass cullet at $10-20 

per ton and mixed glass cullet free of debris at $30-40 per ton (Woolverton 1996).  In 2001, 

Meyer, Egosi, and Andela (2001) stated that mixed glass cullet is sold in the United States for 

$1-2 per ton with effective marketing efforts versus $5-7 per ton for conventional aggregate.  

However, the total shipping costs and impacts to operational changes associated with 

implementing multiple aggregate sources must be considered (Clean Washington Center 1996). 
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To perform a cost analysis of glass modified asphalt roofing shingles compared to 

conventional shingles, material costs for conventional aggregates and glass cullet as top surface 

granules and as filler material were estimated.  Ceramic coated black roofing granules were 

quoted at $145-185 per ton and approximately $100 per ton for the uncoated headlap granules by 

Specialty Granules Inc. (SGI) and 3M Industrial Mineral Division.  Because shipping and freight 

costs are so varied, the prices were given as free on board (FOB) at the granule manufacturing 

plant, where the buyer pays for all transportation costs.  High calcium limestone filler material 

was quoted between $17-40 per ton by Lhoist North America and Great Lakes Calcium. 

The estimated price for recycled glass was provided by Strategic Materials Inc. and 

Dlubak Glass, and roofing granules were approximately $131-135 per ton and $150 per ton for 

filler material.  However, if very large volumes became the market demand, the price for glass 

roofing aggregates could eventually compete with container cullet pricing and 5/8” minus plate 

glass recycling at $78-100 per ton.  The cost of obtaining white pigment powder at a rate of 8% 

by weight of the surface granules was $3.00 per pound.   

Although cool asphalt shingles currently sell for up to $0.50 per ft2 more than 

conventional asphalt shingles (U.S. Department of Energy 2013), the cost increase associated 

with implementing recycled glass granules with pigments is approximately $0.112 per ft2.  

Conventional ceramic coated granules, which are utilized at a rate of 0.50 pounds per ft2, can be 

replaced by glass granules without the use of pigment powder for cost reduction of $0.008 per ft2 

in material cost alone.  Glass filler material at a rate of 0.46 pounds per ft2 can be utilized at a 

cost increase of $0.03 per ft2 in place of limestone filler material.  However, since filler material 

had no effect on reflectance or emittance, it was not included in the economic analysis.  

According to the Department of Energy Cool Roof Calculator, the estimated savings associated 
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with changing reflectance to 0.30 from a black roof for residential homes in Baton Rouge, LA is 

$0.061 per ft2 per year, resulting in $91.50 savings per year for a typical 1500 ft2 residence (U.S. 

Department of Energy 2014).  As shown in Table 12, with the annual savings achieved from 

increasing reflectance, the payback period to offset the increased cost of glass granules with 

pigments is estimated at 1.8 years, which is a relatively short period of time as compared to the 

service life of a residential roof. 

Table 12 Comparison of Material Costs 

    
Conventional 
Aggregates 

Recycled 
Glass 

Recycled 
Glass & 
Pigments 

a) Cost of Top Surface Granules ($/ft2) $0.041 $0.033 $0.033 

b) Cost of Pigments ($/ft2) - - $0.120 

c) Cost of Limestone Fillers ($/ft2) $0.007 $0.007 $0.007 

d) 
Total Cost of Aggregates [d=a+b+c] 
($/ft2) 

$0.048 $0.040 $0.160 

e) 

Difference in Cost from Baseline 
Conventional Materials ($/ft2) 
Conventional Aggregates ($0.048) 
Glass Aggregates ($0.040-$0.048= 
-$0.008) 
Glass & Pigments ($0.160-
$0.048=$0.112) 

Baseline -$0.008 $0.112 

f) 

Reflectance Savings based on 
Department of EnergyCool Roof 
Calculator 
($/ft² per year) 

Baseline $0.016 $0.061 

g) 
Estimated Payback Period [g=e/f] 
(years) 

Baseline 

Materials costs 
are cheaper in 

addition to 
savings in 
reflectance 

1.8 years 
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3.5 Conclusions 

Based upon the results of this study, recycled glass is an effective alternative as a replacement to 

conventional aggregates used to produce asphalt roof shingles.  When processed and crushed to 

size specifications, recycled glass can be used as top surface granules, backdust, or filler 

material.  When compared to the engineering properties of conventional shingle aggregates, glass 

cullet produced a lower specific gravity and rate of absorption value.  Comparisons of soundness, 

void content, and effects on viscosity also showed that glass can be a suitable alternative. 

The objective of this study was to increase the reflectance of asphalt roof shingles by 

implementing glass cullet without affecting shingle performance.  Based on the results of the 

experimental program, the following conclusions may be drawn: 

• Reflectance results were a function of only the top surface granules, as the type of 

filler material had no significant effect on reflectance.  Green glass cullet increased 

reflectance by 1.7-1.9 times the value of black ceramic coated granules, and clear 

glass cullet reflectance was 2.25-2.50 times greater than conventional aggregates. 

• To achieve cool roof features, the addition of a white pigment powder mixed together 

with the top surface glass granules increased SRI values ranging from 27.1-30.6. 

Although there is a modest increase in the cost of materials of $0.112 per ft2, glass 

modified asphalt shingles with pigments can result in annual savings of $0.061 per ft2, primarily 

due to a reduction in cooling energy demand during the summer.  It is recommended that further 

research continues to evaluate the durability of glass modified asphalt shingles, and in particular 

retesting tear strength using thinner or actual production specimens. 
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CHAPTER 4 – SUMMARY AND CONCLUSIONS 

Implementing sustainable materials into current manufacturing processes can reduce costs, 

conserve energy, and lower pollution, and for a material to be considered sustainable, it should 

be cost efficient to the consumer and must perform comparably or better than conventional 

materials.  This study evaluated the feasibility of using glass cullet as a substitute for 

conventional roof shingle aggregates in an effort to increase the reflectivity without 

compromising performance specifications.  The first phase of the experimental program 

compared the engineering properties of glass cullet to conventional aggregate, and the second 

phase resulted in the development and performance testing of glass-modified laboratory 

produced shingles.  Based on the results of this analysis, the following conclusions may be 

drawn: 

• Glass cullet received from source recycling plants are generally coarse grained 

aggregate and therefore must be ground or crushed in order to be applied into the 

manufacturing process of asphalt roof shingles.  Suitable shingle aggregate particle 

sizes include 2.36mm – 595µm for top surface granules, 595µm – 75µm for backdust 

particles, and 150µm – 45µm for filler material.  

• When compared to conventional shingle aggregates, glass cullet has a lower specific 

gravity and absorption rate thereby making it a suitable replacement.  An analysis of 

soundness showed that glass cullet performed better than the crushed limestone 

backdust but less than the ceramic coated surface granules. 

• The void content of glass cullet as top surface granules and backdust particles was 

greater than conventional materials.  The filler material glass cullet had less voids 

than conventional aggregates. 
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• The effects on rotational viscosity of glass filler material compared to high calcium 

limestone filler material showed mixed results, whereas green glass fillers decreased 

viscosity and both sources of clear glass increased viscosity measurements.  Viscosity 

results are based upon the type of asphalt, the amount and type of fillers, and 

temperature, and these variations may be attributable to varying level of debris within 

the glass source, such as paper, plastic or foil labels, metal or plastic caps; cork, paper 

bags, wood, food residue, grass, and soil. 

• Typical asphalt shingles are characterized by low reflectance, and results show that 

reflectance values were influenced only by the type of top surface aggregate utilized, 

and the type of filler material had no effect on reflectance values.  The results show 

that a typical black ceramic coated asphalt shingle produced reflectance values from 

of 0.036-0.040.  Replacing the top surface granules with green glass produced 

reflectance values of 0.069 and clear glass from 0.086-0.090.  In order to achieve cool 

roof attributes, the addition of a white pigment mixed together with the top surface 

granules increased reflectance to 0.263 for green glass and 0.254-0.275 for clear 

glass.  Emittance results were unaffected for all shingles ranging from 0.906-0.933. 

• Glass modified shingles were tested for durability by measuring resistance to tearing, 

and specifications state that the minimum standard for tear strength is 1700 grams.  

However, in order to determine accurate readings of laboratory produced shingles, 

further tests and evaluation of procedures must be conducted. 

• Compared to a conventional black shingles, initial costs analysis shows only a modest 

increase in material costs of $0.112 per ft2 to produce glass modified asphalt shingles 
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with pigments, but annual savings of $0.061 per ft2 per year in building energy 

consumption can be achieved through the increased reflectance. 

Based on the results of this study, it is concluded that glass cullet can be successfully 

blended with conventional materials to produce a sustainable asphalt shingle that has a solar 

reflectance of greater than 25% without compromising performance.  However, glass-modified 

asphalt roof shingles still requires further evaluation when considering environmental, design, 

and operational factors.  Further research is recommended in the following areas: tear strength, 

cullet surface roughness effects on reflectance, granule adhesion, abrasion of cullet, shingle 

weathering, effects of filler amount, size, and physical characteristics on coating viscosity, 

penetration of asphalt, pliability, and fastener pull-through resistance.  Additionally, further 

research is necessary to determine detailed life-cycle assessments and life-cycle cost analysis to 

fully understand the environmental benefits and economic feasibility of glass-modified roofing 

shingles. 
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APPENDIX 

1 Economic Analysis Worksheet 

 

Conventional 

Aggregates
Recycled Glass

Recycled Glass 

& Pigments

a) Cost of Top Surface Granules ($/ton) $165 $131 $131

b)
Cost of Top Surface Granules ($/lbs)

[b=a/2000]
$0.083 $0.066 $0.066

c)
Usage Rate of Top Surface Granules (lbs/ft2) - Based on shingle 

antomy findings in experimental data
0.5 0.5 0.5

d)
Square Foot Cost of Top Surface Granules ($/ft2)

[d=b*c]
$0.041 $0.033 $0.033

e) Cost of Pigments ($/ton) - - $6,000

f)
Cost of Pigments ($/lbs)

[f=e/2000]
- - $3.00

g)
Usage Rate of Pigments (lbs/ft2) - Based on 8% by weight of top 

surface granules as utilzed in experimental procedure
- - 0.04

h)
Square Foot Cost of Pigments ($/ft2)

[h=f*g]
- - $0.120

i)

Cost of Limestone Filler Materials ($/ton) - Only limestone filler 

was used for this analysis since glass fillers measured no effects 

on reflectance or emittance

$28.50 $28.50 $28.50

j)
Cost of Limestone Filler Materials ($/lbs)

[j=i/2000]
$0.014 $0.014 $0.014

k)
Usage Rate of Limestone Filler Materials (lbs/ft2) - Based on 

shingle antomy findings in experimental data
0.469 0.469 0.469

l)
Square Foot Cost of Limestone Filler Materials ($/ft2)

[j=k*l]
$0.007 $0.007 $0.007

m)
Total Square Foot Cost of Aggregates ($/ft2)

[m=d+h+l]
$0.048 $0.040 $0.160

n)

Square Foot Cost Difference from Conventional Materials ($/ft2) 

- Based on Total Square Foot Costs of Aggregates.  Conventional 

Roof ($0.048); Glass Aggregates ($0.040-$0.048=-$0.008); Glass & 

Pigments ($0.160-$0.048=$0.112)

Baseline -$0.008 $0.112

o)

Reflectance Savings ($/ft² per year) - Based on Department of 

Energy Cool Roof Calculator.  Inputs: Baton, LA; R-value 5 (low); 

Emittance 92; Reflactance Glass 9; Reflectance Glass & Pigments 

30; Average summer & winter costs and efficiency

Baseline $0.016 $0.061

p)

Estimated Payback Period (years) - Based upon savings achieved 

from reflectance and materials cost differences

[p=n/o]

Baseline

Materials Costs 

are cheaper in 

addition to 

savings in 

reflectance

1.8 years
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2 Department of Energy Cool Roof Calculator for Glass Granules 

 

http://web.ornl.gov/sci/roofs+walls/facts/CoolCalcEnergy.htm 
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3 Department of Energy Cool Roof Calculator for Glass Granules with Pigments 

 

http://web.ornl.gov/sci/roofs+walls/facts/CoolCalcEnergy.htm 
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4 Summary of Shingle Development and Pilot Testing 

The development and production of laboratory produced fiberglass roofing shingles with 

increased reflectance underwent multiple iterations.  The initial step included the development of 

control samples, which was comprised of ceramic coated top surface granules, asphalt coating 

with limestone fillers, a fiberglass mat, and crushed limestone backdust particles.  The next step 

was the incorporation of recycled glass in order to measure the effects on reflectance.  Glass 

modified roofing shingles consisted of top surface glass granules, asphalt coating with glass 

fillers, a fiberglass mat, and glass backdust particles.  It was noted that the filler material had no 

effect on Solar Reflectance Index (SRI) measurements, and glass granules on the top surface 

increased reflectance and had no effect on emittance values.  However, despite the increased 

reflectance performance, the shingles were not above the cool roof threshold at 0.25 reflectance. 

 To increase the reflective performance of glass as a top surface granule, trial and error 

testing was performed.  The first method included the use of white liquid water based paint 

mixed together with the asphalt coating.  However, in order to achieve satisfactory levels of 

reflectance, the coating ratios had to consist of over 50% by weight of paint, and at that level, the 

asphalt coating’s properties were altered to where mixing and handling at high temperatures was 

not possible.  Another method considered was painting the top surface of the coating prior to the 

placement of top surface granules.  However, this method was not achievable due to the high 

temperatures and fast pace of work required causing concerns with top surface granule adhesion.  

The next method consisted of sprinkling a white pigment powder onto the surface of the shingle 

prior to the placement of the glass granules, and this method also caused major concerns with 

granule adhesion.   By mixing the white pigments together with the top surface granules and 

applying them at the same time, all workability and adhesion concerns were resolved. 
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